Bioperll.4 Fa—kJ7I)l(http://www.bioperl.org/Core/Latest/bptutorial.html)DFIER

(GRIE:RRLEDH-ECHD B RIEFRLTHYET)

NAME

BioPerlTutorial - a tutorial for bioperl
VERSION

1.4

AUTHOR
Written by Peter Schattner <schattner@alum.mit.edu>
Copyright Peter Schattner

Contributions, additions and corrections have been made

to this document by the following individuals:

Jason Stajich
Heikki Lehvaslaiho
Brian Osborne
Hilmar Lapp

Chris Dagdigian
Elia Stupka

Ewan Birney

M=

ED2—ILDRF1AVN RGYTRDB, "t " TFRRRAIVTRDEF 1AV REES bioperl R¥aiv bSO —
REXEDIER INEDF2—RITILIZIEEENTOVET s perl BEHERLEHD T TA—H—ILZEFa—H)
FIVEBRMTEET,

COFRF*a1AUME perl POD(plain old documentation) ZA—IVYETEMTNVET, KYFELVPT LY
TH—IIMILI=LDTHNIL pod X EHRY— /)L (pod2html, pod2man, pod2text, i&) TIA—Ivr%
BZBENTEET,

(BR:E:BERZ I LE PpOD [CHIDTHYFEEA)

BR

* 1. AokaFY Ay

BZ

DA9DXE—hk

YILDITITHERED
.1 bioperl MT/NAVA+—)L(bioperl PIAT7 AV AL—)L)
.2 TERGAVAM—IL

A A—IL

FEUNIX A—HF—DT=H DR
.6 FHRDRFAVIDIGRT
. bioperl ATz IrDHIRE

II1.1 BHAT Ik (Seq, PrimarySeq, LocatableSeq, RelSegment, LiveSeq,

H H H H H H H H
O WwWw W N

*
H
0O H 0O O O O O O O O

LargeSeq, RichSeq, SegWithQuality, Seql)
o II.2 Location #7¥xHhk
0 I1.4 AVA—D1—ARFXTDHREREFT oIk
* III. bioperl {ERi%x
o III.1 A—AILEIVE—LDT—ER—RLDOERIT—E~DTIER
o ITI.1.1 VE—FT—ER—ZAADT7HIEAX(Bio: :DB: :GenBank, &)
o III.1.2 A—AJT—RN—X (Bio::Index::*, bp index.pl, bp fetch.pl,
Bio::DB::*) DA TYIRILETIER

o III.2 Transforming formats of database/ file records

o ITII.2.1 Transforming sequence files (SeqIO)

o ITI.2.2 Transforming alignment files (AlignIO)

o ITII.3 Manipulating sequences

o III.3.1 Manipulating sequence data with Seqg methods

o ITII.3.2 Obtaining basic sequence statistics (SegStats, SegWord)

o ITT1.3.3 Identifying restriction enzyme sites (Bio::Restriction)

o ITII.3.4 Identifying amino acid cleavage sites (Sigcleave)

o ITI.3.5 Miscellaneous sequence utilities: OddCodes, SegPattern

o ITT.3.6 Converting coordinate systems (Coordinate::Pair, RelSegment)
o III.4 FELIESIDEFER

o III.4.1 BLAST M3EfT(RemoteBlast.pmZHLVT)

o ITIT.4.2 Parsing BLAST and FASTA reports with Search and SearchIO

o ITII.4.3 Parsing BLAST reports with BPlite, BPpsilite, and BPbl2seq
o ITT.4.4 Parsing HMM reports (HMMER::Results, SearchIO)

o ITT.4.5 Running BLAST locally (StandAloneBlast)

o III.5 Manipulating sequence alignments (SimpleAlign)

o ITI.6 Searching for genes and other structures on genomic DNA (Genscan,

Sim4, Grail, Genemark, ESTScan, MZEF, EPCR)

o III.7 Developing machine readable sequence annotations

o ITII.7.1 Representing sequence annotations (SegFeature,RichSeq,Location)
o III.7.2 Representing sequence annotations (Annotation::Collection)

o ITII.7.3 Representing large sequences (LargeSeq)

o III.7.4 Representing changing sequences (LiveSeq)

o ITI.7.5 Representing related sequences - mutations, polymorphisms
(Allele, SegDbiff)

o ITII.7.6 Incorporating quality data in sequence annotation
(SeqWithQuality)

o III.7.7 Sequence XML representations - generation and parsing
(SeqIO::game, SeqIO::bsml)

o III.7.8 Representing Sequences using GFF (Bio:DB:GFF)
o ITI.8 Manipulating clusters of sequences (Cluster, ClusterIO)

o III.9 Representing non-sequence data in Bioperl: structures, trees and
maps

o ITII.9.1 Using 3D structure objects and reading PDB files (Structurel,
Structure: :I0)

o II1.9.2 Tree objects and phylogenetic trees (Tree::Tree, TreelO, PAML)
o ITI.9.3 Map objects for manipulating genetic maps (Map::MapI, MapIO)

o ITI.9.4 Bibliographic objects for querying bibliographic databases
(Biblio)

o ITII.9.5 Graphics objects for representing sequence objects as images
(Graphics)

o ITI.10 Bioperl alphabets

o III.10.1 Extended DNA / RNA alphabet
I11.10.2 Amino Acid alphabet

O

* IV. Auxiliary Bioperl Libraries (Bioperl-run, Bioperl-db, etc.)

o IV.1 Using the Bioperl Auxiliary Libraries

o IV.2 Running programs (Bioperl-run, Bioperl-ext)

o IV.2.1 Sequence manipulation using the Bioperl EMBOSS and PISE interfaces
o IV.2.2 Aligning 2 sequences with Blast using bl2seq and AlignIO

o IV.2.3 Aligning multiple sequences (Clustalw.pm, TCoffee.pm)

o IV.2.4 Aligning 2 sequences with Smith-Waterman (pSW)

o IV.3 bioperl-db and BioSQL

o IV.4 Other Bioperl auxiliary libraries

o V.1l Appendix: Finding out which methods are used by which Bioperl Objects
o V.2 Appendix: Tutorial demo scripts

I. /oba% 93y

I.1 BZE

bioperl & . NWNAX AV ITAITAVADT TV r—30E LT perl RYUTLTRHE SNz perl DED1—I)L
BTY, TIMDE, ZLOMBRD/SvTr—I P Entrez, SRSBEED T —D WERB A A—TT—REF S5 K57 REL
NDTATSLTEBYFERE A, —H.bioperl (FERFIDIEE, T—E27+—<INEEBED DBADTIEXR,
BLAST. clustalw, TCoffee, GenScan, ESTscan, HMMER DKSERFEYZFDTOT S LDFEREEIT.
PYHLOTOTSLBENBR AN perl EV1—ILEFRHLET ., DFY. Web R—ADV AT LTIEE
BEENTARELZ EDEST—2DBMEAREET DRV TR TSI perl TTEET,

bioperl DFBMERAWNSF=HIZ perl PDSE, EC1—IL ATz Ik, AVYRDFENEZEED perl SED
EAMGEBN I —ITRETT, BLINLIZEBATWVETNIE perl DUFHMOAREENNSBLTES
W, 1=¢ZIE.s. Holzmer &FIPerl Core LanguagelCoriolis Technology Press ZEOHFET , —D
Fa—hr)7ILTlEperl EEBEDAFE. REEBRE(Cperl OBEREFHZALHLFBMELTVEF A —A.
objext-oriented perl EVa—ILEEDKIIZENEWLNDIEIH perl DIGAMBE bioperl ZFESLIZH
WTEXRLTWFER A

bioperl [IA—TUV—RYILIzT7THY . BEFRICAREPTT . A—ToV—RYTrIZT7DFEAIZDNT
[EEAMDECATY , BHIZTAINTE, YV—RO—ROHREMNARETHY. VI I 7T DFEHRAENFTETT L
ML F—ToV—RYITEIIT7HED T, E@BHEREZZLDRIUTATDTOTIY—ZL>THEIN TS0,
I—RIEDTLEFESHONTHELT . IKEKEHROBRIFEEIZIEA—F —A =Tz —RAMIZERINWTE
HAMAT. BRICARPOTODIIMCIEFHRRARE S ICEF XAV B DOVNTHEVEDLHYET, DOFY.
EFRLTRARICHL TRV KEETHRIILIELIERATETT,

CDF1—hr)TILIFFRD bioperl A—HFITHL T, ZOFEHBRELIZOMNTEIIELEZBHNELTVET . &
BEICIFEZDOF2—M)TIVIZIETRRDLDEESHAHET .

*bioperl ITKY . NAF AU TAITAI YU DIREBEES/ROIENHELIIFTRHRLTLNET,
*x TOBEMNEERTEAYYR N bioperl /1\Wwhr—SDECIZHAINETRLTLNET,
* B IEREECTENIEEVDIERLTOETS,

*bioperl MEENDZLETEVAN =23 T HRITAIREL RV T, bptutorial .pl HNHYET, T
ATREAI—RHIE =LV TUY scripts/ FHILEAM examples/ FZHILFTRIZHYET . ChHRIITRDER
& bioscripts.pod Z7AILA(HBLE http://bioperl.org/Core/Latest/bioscripts.html)
[ZHYET . MA T, E<D bioperl EFVa—/LM oD XEIZIE SYNOPSIS U avNICEITAIRELAI—F IS

Y, BV a—ILEAYYRDENAERLTOET , Ff=, FAQ
(http://bioperl.org/Core/Latest/faq.html)RIZHLWDOHADEBEHWVWI—RFHLBHYET,

COF1—M)7INEZHBEITEHAINEZFDRIZKHZR DT /\yH—ZFUVEAS bptutorial.pl RYUTH
ERITTHIEICTEKY . bioperl ZRYBRBRLPIESTLEY . Fa—RITILDRI)THE(ELAZDFa—K)
FILADI—FFEFESITELYE) HETZDRIVI)TERIZHYFR—ILLPFLLTHYET . COFa1—r)7
ILADIFEAEDRY)TMEHE-DTL U TEKIET TT, LELEOEITHIE, bioperl [SEBEHDATNIZEFN
NEEEAEONERETHIINEEELDTLLY LDODDTEVARN—2aVv (FHBIDSATSUH BT
NEBDTOT S LGEEDHRMBED A—ILEBEELET AL ELLSHRINSATSUNTATSLNRED
MoREFNIEINSDTEVAMN —2av ERIELTENEWNEE A,

1.2 9499R32—h

CONYT—DFFIEDN—BINDEIDEEND=-WVAD=HIZ, LELWVFEIETbioperl DL DADHE
BEAENDBIERICHRLEED A—ILBHYET . Bio: :Perl EVA—ILIILK OO DEHEL 7 AMEELIR
HMLET, XX LLTORYY T E swissprot DERFIZFRHAAHA, FASTA BRIZESHLET,

use Bio::Perl;

this script will only work with an internet connection
on the computer it is run on

$seq object = get sequence('swissprot', "ROAL HUMAN");
write sequence (">roal.fasta", 'fasta',$seq object);

HhDF|EL T, NCRT D#EREZEFELY BLAST #EITLET . NCBI AR TS BLAST #MELLWVKSICE L DHEFE
FIHIZHAWTESWERE: ZORY)FRENCBI O BLAST #EEICABERIF TS, a—HF—H L ZED
BREREEITTHENCBI D BLAST H—/N\—([CATHIHIMND1=8), LLELD BLAST REZITL=WLMEEI
BLAST /\y4 —T%O—h/LIZEHoO—KRL TS,

use Bio::Perl;

this script will only work with an internet connection

on the computer it is run on
$seq = get sequence ('swissprot', "ROA1 HUMAN");

uses the default database - nr in this case

$blast result = blast sequence ($seq);
write blast (">roal.blast", $blast result);

124 Bio: :Perl [SIXUAT D KIEFENOT ULMERENKSABYET,

get sequence - BEAN AVI—YMERARER T —AR—ADSERIIFIMELET
gets a sequence from standard, internet accessible

databases
read_sequence - D7AIDBERANEFRAAAFTT
read all sequences - JF7AIDOTRTOERINEHEHAAHAET
new_sequence - XFH|M5bioperl BAERFIZFERLET
write sequence - 1DDERF (sequence) HBHUWIIERFI (sequence) DERFI (array)EIT7AIL
ETHLET
translate - BESIDOERETVET

translate_as_string - EEHIDFERZEITL. BEINZEXFIELTRELEY
blast sequence - NCBI DAZH#ET—AR—X|ZxLTBLAST Z#ETLET
write blast - BLAST fARZI7AIVICEEHLFT

Bio::Perl.pmEVaA—ILEMESZEICKY, UTTERS seq ¥ SeqIo ATV IMEFBARMIZEST(C
bioperl £ CERIIEEETHEMNARETT , LML, COE—FTIHIEEIZBEONF-EDELHYET,

NODBEREIZ DT XY EY =G AL 'perldoc Bio: :Perl'Z#E{TLTBio: :Perl MY =aTFILR—
#SHBL TSN, I TRTO—ARTIL, Bio: :Perl [Ebioperl #EE(F=EX (L bioperl THEFIERTIL
ZLDELGHBRT—IILER N BRIEORFCOBBED = DERDA T avE#H/SZEMNTEETT) DH T vk
[ZT7OEALET, BLDT—RTIEA—H—(F&YUBEL bioperl ATz VMERAWSKSITHETLESH. 1
ABHBWERELTOT ST —DIHICBLONEEOBEMYZE Bio: :Perl (FNTLTVET, =, COED2—IL
DFENVADKY ZLDHI%ERLT= examples/bioperl.pl #SHBLTLEELY,

1.3 YIrDITFIZRHERED
bioperl MEITICHELRLDIETTENDEYTY,
I.3.1 bioperl MFw/NMAVAL—IL(bioperl MMAT7 |4V R+—)L)

bioperl ME/NVAC—ILDT=HIZ. bioperl DIAFTED a—/)L|ERAMRIZ perl BIED AV RAM—ILHARE

T9,bioperl ldperl 5.005.5.6.5.8 CEIZTAFEINTLVES ,bioperl Di/NAA—ILTlE perl
5.004 CHEIKIET TT ., LML, CPAN(TERSB)DED1—/ILEFE>TIVD bioperl ATV VRN EZ TULVS

MDT.perl 5.004 RETD bioperl DEITIIMBAFEAELTLVET ,perl 5.004 FRE Tbioperl #E1T
LREAENHDDS, perl D/N—2a0 7y TEIToTLEELY,

perl MALUIN—D3V TlIKO AT, MEBR O T /N\YA—IC7 I ERALBETHEAMDBEIZITHREINET,
bioperl [FEMLERFRYINITITA T VMDRELGREFYTY . EHLBYINIIT O RAT LR OHEE
ETHEWNS=KIBNT oA RREREEIC, BT /IN\vH—2F o TRIV TR EED LT KWBITFELRYE
ER

CPAN @ Devel: :ptkdb ELTHERATES, 2U—DIT S T4HIIVIETINVH—TH D ptkdb ZHIZHEIHLET,

BED perl TIEATRURSAUAA—T—ADB NG ER T /INvH—0HYET ("perl -d <script>"
ELTHERATEEYD),

perl¥Y—JL® Data: :Dumper [ZLLTOEIXTHLY.

use Data: :Dumper;

print Dumper ($seqobij) ;
bioperl ATV ICDT NV I IBRERDI-OIZKRIZEET,
I1.3.2 BEBAVAM—IL

bioperl MDEEDLDOME, RNV AM—IVEBZ =3O BETY BMOYIRITF7ELTIE, cPAN D
perl EPa—/JlL, bioperl OWBIO—KFLRIR)D/\0r—54T51) bioperl M xs Yisk. T L TIEER
BINAF AV TARTAYRTOAT S LDBBETT,

Some of the capabilities of bioperl require software beyond that of the minimal
installation. This additional software includes perl modules from CPAN, package-
libraries from bioperl's auxiliary code-repositories, a bioperl xs-extension,
and several standard compiled bioinformatics programs.

Perl - L5k

Perl - extensions

bioperl TWHEET D perl DILRED1—ILDRLEAMIDWTIE bioperl /X —2 M INSTALL 77
AL (HAUE http://bioperl.org/Core/Latest/INSTALL)ZESHBL TS,

bioperl MFHBILRIK)
bioperl MO DHEEETIEL, bioperl DHBIO—FLROKIDEDA—ILEBLBEELET . CNODED 21—

JUIZBET AL RAR—ILIZDWNTIEE IV Ei&EUT7LURESBLTEALY,

bioperl M C EEBILRENEBDNAA AL THITAORTAT S L

Bioperl C extensions & external bioinformatics programs

BLBI 754 AR OO—hHILTOD BLAST RFEIZbioperl TIXLWDOAD c EETAYSLEANET . bioperl
DINSDHEREZEST=DIZIE, UTDESHBEBDTOSTSLY—REELIZ, ANST € HBWLTGNU ca/iA
IHBLETY,

Smith-Waterman 74 AVFTIE bioperl-ext-0.6 http://bioperl.org/Core/external.shtml

clustalW7IA4AMTIE ftp://ftp.ebi.ac.uk/pub/software/unix/clustalw/ ftp://ftp-
igbmc.u-strasbg.fr/pub/ClustalW/

Tcoffee PIA AV MTIE http://igs-server.cnrs-
mrs.fr/~cnotred/Projects home page/t coffee home page.html

O—AJL BLASTHRFETI ftp://ftp.ncbi.nih.gov/blast/executables/release/
EMBOSS 7 74 —3a> Tl http://www.emboss.org
I.4 412RF—=JL

BRAGAVR—RUEDEBRDAVAN—ILTIIHZENLGEFETRETLET,
The actual installation of the various system components is accomplished in the
standard manner:

* RYRT—HETI\wr—CFRDH5

>*

Ayoa—K

*

(qunzip HAHWNEEDMEERYTRTD) T7AILDFFE

*

T—HhATI27A4ILDEEA I tar -xvf)
* Makefile MMERK "perl Makefile.PL"

* OAYURZET, "make". "make test". "make install",—DFEIL CPANEY 21—/l bioperl-
extension, SAED2—ILDAVR—ILDEIZERBYRINET . BBITED2—ILTHS CPAN.pm (&
perl EVa— /L% CPAN DAV AR—LT B=ODFIEZBEHILLTNET,

FROED1—ILDTARTIZDLNT CPAN EVa—ILEALVAE, Bundle: :BioPerl EVa—/LERHW
f="bundle"AY KR TA U AL—ILNETRETT , HIZ (X,

The CPAN module can also be used to install all of the modules listed above
in a single step as a "~ "bundle'' of modules, Bundle::BioPerl, eg

$>perl -MCPAN -e shell
cpan>install Bundle::BioPerl

<installation details....>
cpan>install B/BI/BIRNEY/bioperl-1.2.2.tar.gz
<installation details....>

cpan>quit

N=23VDHEBSNEDDHELRITEATELVDTEELTTEL, "bundle"D&LLEWETAIE, 1V R—
JVICHIENRELBEESHBENHLMYIZKWIETT,

Be advised that version numbers change regularly, so the number used above
may not apply. A disadvantage of the "~ “bundle'' approach is that if there's a
problem installing any individual module it may be a bit more difficult to
isolate.

I pioperl M INSTALL 774 (HAHWLNE http://bioperl.org/Core/Latest/INSTALL)%
SHRLTIESLY,

SNERTO4S S5 L (clustal., Tcoffee, ncbi-blast) TIXBDRFYI T,

* RITTEI7ANNHEDTALIMNIERT BURIREZ M (CLUSTALDIR, TCOFFEEDIR, BLASTDIR) %=
EZIE(.bashrc, .tcshre) DKIBHEARE I7 M ILIZEREL TLIZEL, B—AJL BLAST # 1T H1=HIZ(E.
bioperl NERE TESKSIZA—HIL BLAST DT —ER—RATALIYMNERETIHELNHYET, (I T
WEFMIZITHONET A, ELRLELI-HZEIL Bio: :Tools: :Run: : StandAloneBlast M manpage &
SHRLTIESLY,

(DI EH UNIX IZBWTIR) RETETHASIBRBELTIE., F7MIILDEEAHEROBEIAHYET , 1V A—
IWEEBIEL-Y., LEZTHAVAL—ILTBEE . bioperl DEMYIZHS INSTALL 77l (HAHLME
http://bioperl.org/Core/Latest/INSTALL)& ERT S5 ETOS S LD README 77/ ILESHEL
TLEZELY,

The only likely complication (at least on unix systems) that may occur is if you
are unable to obtain system level writing privileges. For instructions on
modifying the installation in this case and for more details on the overall
installation procedure, see the INSTALL file (or http://bioperl.org/Core/Latest/
INSTALL) in the bioperl distribution as well as the README files for the
external programs you want to use.

1.5 JEUNIX A—F—DI=HD{FER

bioperl [EEITLinux &MacOs xZFEL . INIXBRETHESINTAFESNTVET HAT. ZOFa—r
FILIZUNIX DEATENINTNET,

bioperl MAFTED L Microsoft Windows DZLD/N—UIV T THDTANEN, BETBIET TT, Z<D
Windows —H¥—I[d perl &bioperl BBAPIEL T Active State http://www.activestate.com%
AWTHYLETHERTT D windows —HF—[F Cygwin(http://www.cygwin. com) IRETF T
bioperl #E{TLTVET, SFHIZ DT/ vy —C RO INSTALL.WIN 7740 (H AU E
http://bioperl.org/Core/Latest/INSTALL.WIN)ZSHRDIL,

%<{M bioperl MHHEIT CPAN EDa—IL RIS ILHDININET OIS LEERLET ChODHEE
[FBLNDONDHAHNFMD 0s ETEEAGLAELNFERE A, L. IFUNIXOS ETINODHEEIZT I+
ALESERADDTHNIL, BIFFT DB FERLVEBELGLR—FET5ELIITbioperl ETHF AL TS
Lo LA, CHhB3E UNIXIRIETOD bioperl MTAMIBONTNSD T, FERERDERVITINREET HH
LLhFEEA,

Many bioperl features require the use of CPAN modules, compiled extensions or
external programs. These features probably will not work under some or all of
these other operating systems. If a script attempts to access these features
from a non-unix 0S, bioperl is designed to simply report that the desired
capability is not available. However, since the testing of bioperl in these

environments has been limited, the script may well crash in a less graceful
manner.

1.6 FRDFFAVIDIGRT

CODFa—kr)FIIEbioperl DFTARTDATOLIREAIYRIZDVWTEIME=YTIEHBYEREA, TDHEEL
EVA—IMWEICEENSIRF AN EESRATZEN, TRTODED2A—ILDRF1AVMIDWTET2HD
NPT NAE—T—RELT http://doc.bioperl.org/bioperl-live/ AHYFET, ZDA 53—
TJI—ADYAME bioperl DI RTHDEDI—ILEAYYRIZDNWTEIBLTWVET AHA T FIDEIRKLTS
BRIZDOWLWTIE, bioperl DEHYD—FB LD T(LYUN)RNIZHS FAQ. INSTALL, README 774)L
(http://bioperl.org/Core/Latest/faq.html, http://bioperl.org/Core/Latest/INSTALL,
http://bioperl.org/Core/Latest/README) %R TLZEY,

BRBED1—IICHIBERDAVIERTRTEILLFTTHAHEWSITEN, ELWWRF AU THYLEMNSHEE
BYZESHARELTHITONFET . AT, MARLI=AVYRD per]l TRIEHLT=O. AT IO LFITHEIEN
BAYIRDEZFIMNLIELIEBAATHENWC EAHYET . COMBEERRT DFERO— D&M v.1 DKSIZYTH
DITEFESIETT,

One potential problem in locating the correct documentation is that multiple
methods in different modules may all share the same name. Moreover, because of
perl's complex method of inheritance it is not often clear which of the
identically named methods is being called by a given object. One way to resolve
this question is by using the software described in Appendix V.1.

BLLIADATIWEERBREODTHNIL, http://bioperl.org/Core/Latest/modules.html MHYY
JENTWS, bioperl 7TV MDHEEBEBRDISAR (VZAKE 1.0 ki) THS poF 771 IILESBLTLE
Sy,

{HAT.bioperl MWEB LDFA S5/ a—RA M http://www.pasteur.fr/recherche/unites/sis/
formation/bioperl THIATEEY, £/-. scripts/. examples/TALYr) (bioscripts.pod #HBLY
[http://bioperl.org/Core/Latest/bioscripts.html ZB)RIZHZZE<D bioperl AVUTE
SHTEFET, OBDA 71X, SeqlO, SearchIO, BioGraphics, Features &Annotation, Trees., PAML
ZLTBiopipe IZDWLWTHDREYIMNEMNTULET,

II. bioperl AT H+DIERE

EEDNAF A ITAITAIVADEBEERRT 51=HIZbioperl FTESFEITRLFZASELSICTHIENID
Fa—r)ZILDBEMTY ,bioperl #TV Vb, perl ATz /LD —RLTOT ST DEEEHRFAT S
LDTIEHYFEE A BB bioperl ATV MEADBERIIEETEBYER AL N\v7r—SFRANS-HIZE
bioperl 77TV DEHMEMDILILWHATIEHYEE A,

TI D bioperl AT IMIHIEERET A EIE. bioperl ZFNIHIT ETERBICRIDIENVHYE
B 2EZIEDEKEL s BDTERSIA TP IRI(Seq, PrimarySeq, LocatableSeq, RelSegment,
LiveSeq, LargeSeq, Seql, SeqWithQuality)M®BYET, MoDATOzH/RDER(ZFLTEALA
BEINETHIMNEEBETEIEITEY. BADRIVI)TMIEDAT D OREFESON LM IO B KS(TH
%TL&S,

IT.1 EE§|1T7‘°)I7I~(Seq, PrimarySeq, LocatableSeq, RelSegment, LiveSeq, LargeSeq,
RichSeq, SeqWithQuality, Seqgl)

CDEITlE bioperl MDEHBEINAT DT IMIDNWTHRARTINVET , bioperl ZFSELD AL, FoTLVSF
TOTHOMNREARIEFENZDOWTHLT IBDBELENTLES BERST7AIL, T7AILNDEIL, XFFIMN
BEZon=zEEIT, ELWVIAMT DA Tz HE 111.2.1 BiCiRD SeqI0 E—Va—ILHAMERT 205 TT . L
MLELRIZEDEL, RHB - TEINA TV R BDENHDHEL U T EHA T,

Seq lEbioperl MHFILMHBEINATOTINTT , ENEFEoLLM\WMHMISENEE, bioperl T

DNA. RNA, AV /N\JBRIIZRBBRTEDIFEN-VDIESRATDFT IR TT, LW TLDEFHREIE seq
[CTITAET . COAT O HOMDBREICDNTIZ III.3. 1 L 111.7.1 EidALE Bio: : Seq manpage IZ
FBEINTNET,

SeqIlOA TV I M E BT — 2 ELIT7AINEFRL LEIZ Seq AT IMEIBEBIMIZIERSNE T, 2D
FIEIE I1I.2. 1 ITRBENTOET, AT, BASNILMEIN B EEBDHEIEE, seqA T IMITIILFT
IWT/T—3av &, Genbank W EMBL BBHITZ7 AL DK% EET S "sequence features"EEHDHIEMT
EFET, COMEEE. BICEET /T a AT LORAREICEWTETHEMNTT , 111.7.1 B8,

—A.—EIZHEHIWEIBTOEINEFEFICRYIESR IV TR ELRIGE . B2 OEHNIZT /T—ar it
TBA—IN—AYRIEEKIZHYET, FALBE L PrimarySeq ATV IREEN={HEBTLLS,
PrimarySeq |& Seq DRABEDEELIZMRTYT . BIT—2BHELKGHDEAIZNIL (1D, 7Y aY
HE.dna. rna HBHWME protein ELVITILITFRYL) DHEEH . features EEHFE A, HEHAHULIIH
FOEHINEESIHE. PrimarySeq AT IMITATSLDERTERE—R7YIL. ABDFEHEZREOLE
T, MIE Bio: :PrimarySeq M manpage ZBLFZELY,

RichSeq A7V IMIIBEML seqA TP OPKVBLELDT/T—LaV BREBOET . LLEELGEHN T/
T—2avDHET—AEFENWVESIE 1T1T.7. 1 HICERBINTWDIDA T IREFESLSITHEDTLELS,
GenBank., EMBL, SwissProt Z4A—<YYrDI7AMIL% Seql0 CTRAHAATZEZIZBEIMIZ RichSeqA TV xH
MIERENET,

phred D ND LGB T —REHF =B IIZERIEEFIC SeqWithQuality ATz IMIEONET, b
DAITOTHMEIII. 7.6 Hi*®. Bio: :Seq: :RichSeql manpage ¥, Bio::Seq::SeqWithQuality
manpage IZERBHBAHYET,

LocatableSeqZA IV IMIBERMIERHICEY "AlignedSeq" AT IREEIENTINET , ILFTILERF
TIAAND—ETHIDIE seqA TP IMTT S -RUOEFI TORBERIBMEEZRLET . TDE
FIMNBLTNBTSAAVMIRELIzF vy T DENEEEET , FIA AN TV THS simplenlign &
SimpleAlign ATV (fzZA X A1ignI0. pm, pSW.pm) FANDMDE—V1—ILIZE>TENIIEDHA
F7,

=LV TN LocatableSeq ATV HREESHEIMDET D EIEHYFER A HELDS

(pSW. Clustalw, Tcoffee, Lagan,bl2seqZHWN2) TSA AV EER T DD H ALK, AlignIoZFHALNVT
TIAANT—RIT7AINEZRAFAATZEEICEBBFMICERINENSTT LOALFET(zEXE
SimpleRAlign ATV IMEAERTHEE)BRINTSAAUNEHRHFADBELHDHEZIL, LocatableSeq &l T
ERH|ZHAACNENHDTLLI HDFHREFEEL T, Bio: :LocatableSeq

manpage. Bio: :SimpleAlign manpage.Bio::AlignIO manpage.Bio::Tools: :pSW manpage HY

HYFT,

RelSegment TP Y hH bioperl M SeqATPTHRDVEDTY , RelSegment ATV IMNEIS / LD E
BRERSEEICEFTT 2BEAEPLCIV T DIIGEBIZRVDEIIMLET DY ITO—r R (FzER XYY
NERTEEDLSTRIRDIETT ERIE TSTANNET I LT S0 —%EKEHTHEERE. CDO KSR
EFEETYT, TOLILHEEEI—T AT THDRENHLHEE. FRIN TS
Bio::DB::GFF::RelSegment manpage ZZMBLTEELY,

LargeSeq AT HMIIEREIZEVLES (=LA 100MB BB) ZHRSESITFEON BN SeqA TS HMNTT,
COEILRVEINEZFSIVLENRHDIHE. LargeSeqA TPz HMIDWVTERBSNTILNS I11. 7.3 Bih
Bio::Seq: :LargeSeq manpage ML TS,

LiveSeqA IV IMIERINT—2%BHA=ODFEADEADA TS IMTY , LiveSeq (X REARIZE S
DEENEHDEVSHEEEIRNET, AR KUBSRELRERIT—2088/oN . EEL-FHLLV /LS| L

DEEFDOMBEBDHD=-HOIZEH feature ATz IMEDONET , LiveSeqA TPz IME sSeqA TP
JRERCESICIEHRDNT seql 1V 2—Tx—RERELFT (TESE), LIzA> T seqA TP IMTHER
BIEEAEDAYYRIE Liveseq ATV HRTHIRZA S TLLI, IT11.7.4 HiE Bio: :LiveSeq manpage Tl&
LiveSeqA 7V TIMIDWWTKYFHLLWARMN RSN TNET,

SeqIl AT IME Seq DAV B—DI—RA TP HMI(11.4 EiE Bio: : Seql manpage M) TY, Seql
FITCTHOMIMDY IR 2T T IS —2 D bioperl DEBMEFRIELTVET, SeqI EEDAF—T—R
FITOTHOMEIND AT I bioperl A—H—IZ[XEFREALZLDBLNEE AW

II.2 Location #7¥zHhk

REUWERS|D feature ZRES-HD Sequence Feature 7TV IMIBEEL T Location AT UM IEE
HENTOWET MBFEBRTH=HITFEONDIRAVETACDA T IRELTH Location AT DI EE
bhFET, COIILEELIVETIODEREA T IFDESIKRITHELLI-EBRHITILUTOEY TT,

DO DFA T IMIERDEBEHAWNEIY THE (FEAILEBEFDIIVUNERDORE., RIRLESE
BOZL)EHDIE, 2) RS /LIZBVT feature DEAALMEBEAEEICZHNLELN &,

bioperl MWAWAL Location ATV VMIBHLEMBEERRLET . <HA T, LLEHBEKRIBMEIBAL
MZESTULVELME S feature DEIZEDKSITHIBMNZDLNTHEZ S CoordinatePolicy AT UM
HYET . -LWTLDIGFE. LLEARERIBMEMN T >ZFYL TS Bl afeature # bioperl THRSIFETIED
DEIGEHEEBICOVTEZRDIDENENTLELI LHL. ELYT/LD—FHHIWIEARTELEYS / LIZTDNT
bioperl TFZ/T—av BN EFDIIHT /LDT /T—av% bioperl TAFRALTEIZITWNAWNAL
Location ATV IMEEBRETIENEEIZEDTLELY, #LLIEBio: :Locations TALIRJE T DLIALY
AEEVA—ILORF 1AV Bio: :Location: :CoordinatePolicyI manpage AWK III. 7.1 &S
BOlé,

I1.4 AVRA—DI—ARA TV HREREAT O HH

AVB—DI—RERBEATO IR HHEM bioperl DFREFTDUVEDDBIETT , TNHAED KSICHRES
NBEMEWVWSHEABLIZ. AT IVRELTREUHIN DAY YR EA LV A—TI—RADH TEELET . ETEA T
DEDEREELTEETET . Java DEOIBEBTIEAUA—Tz—RIFEZBD—EELTEZRSINE T, perl TlE
BETCELEITNIXWNMTERE A, In Perl, you have to roll your own.

bioperl TIXAVA—TI—RF T IMIFzZWVTWN, AU A—T1—RAT D HUhERTRKEIZ T #0712,

Bio: :MyObjectI EFEIENTULVET . (WO DHISNERNT) REIZDOWLWTORERAZLIZ, EIT/F—Tz—
ADMAM, EDESIFESIMIDNTDRF2AUNEAE—TI—RAT O IMIRMLET . hPaT IV
bioperl A—H—IZ,loTIFA U A—TI—RA TP HVMIERATIEHYEEAD . Ensembl ¥ biopython %
biojava DEIBMDNAF AL ITARTA4HORATACHMOT O SLEEE bioperl TATSLNRED LS
PYRYATEEN I DWTDERNGIBEEZ T 5-DIZIEAA—T—RA Tz MDD FEEEZHM>THLEFERTT,

RETERARICEALTOCh U EDERIZ DOV CIE bioperl /AWr—U D biodesign.pod Z7A LA
biodesign.html(http://bioperl.org/Core/Latest/biodesign.html)ZESHBOIE,

III. bioperl /%

INAFADTAITAVARATAT ST TORBBENEBD ZIZDVTODYIRIITEDa1— L% bioperl &
RBELFET BIZIELLT DK%,

* A—HILEYE—FDT—ER—R L DEHT—EF~ADTHIEAR
* T—AR—=R, TFAILDIT+—I v EHR

~ BB DIRE

* EREIDFELMERER

* BRHNTSA AU DR EEE

* 47)LsDNA EDEEFEERIIBEDHER

* OO TNEST /T a v EBEDRRE

NLDBREDT RTIZTDON T bioperl MESEBIDAFLUTOE THRRTNET,
III.1 A—AILEE—FDT—ER—X LDERF|T—EF~ADT IR

bioperl MELIFECIIRIEICERZEZ Y TTLET, LA L bioperl TERINFRSFIIZERGT—E~NTIERTS
CENMETY s bioperl M SeqATVTHIMMIBRIIT—R2EFALIMIANTEET, HlZIE,

$seq = Bio::Seg->new(-seq => 'actgtggcgtcaact',
-desc => 'Sample Bio::Seq object',
-display id => 'something',

-accession number => 'accnum',
—alphabet => 'dna');

LOLEZELDBE . AoTMV EDT—E3774IOT—ER—R DRI T—RIZTIERTEHENEELLVTT,
(A TYIRFFENT=TISVRITFAILIEVNSEKRIGEWE ELLTIF—AR—X EESEEZLIELIE/NNAA4 1
VIARTAIORTOERMLZABELTE LIFHAWNSZEITEELTLESLY,

A—AILT—EAR=RIZT7IERTDODATIIREERTIDERLLSICUE—FDT—EARN—RDT It
A% bioperl [FYR—bLET , T—IR—RT7IERETBIZIEZDDO—RMLEHENHYET EALGRLTD
BLBT—AR—R (1=EZ L, flat T7AILH, B—HILDYL—30 TF—ER—IAM, AU E3—FIMEBRD) E—
FDT—ER—=ZMN)IZT I ERTENBRMESIEZDT—EIN—REH DRV T EELCENTEET, COHE
[FITT.1.18IETIT.1.2 8iT. ENEFNYE—,T—EAR—REO—HILDATYIREINTz flat T7AILIZ
DWTERBALTWET . bioperl-do J47 3 EBLioSQL AF—TYEDA—ILDAVA—LERENBHELO—
ALD)L—3F I T—ER—AADETRHNETIERICEALTIX 1v. 3 i CEHLGRBALTLVET,

OBDA(Open Bioinformatics Data Access)Registory VATLZEEST7IO—FLAEETI , OBDA FH
WoE T—ER=ZANTIVRTFANTHEHMNIL—23F)L DB THAN . HAWNEE—AILIZHE M Rvb ETL
DTV EATEGLNIDVWTH AR ELGLT —IR—ZADES|T 2% AR — g 5 EMNFRET T LO AN
BEIT7ANDLELGEEDEAE LOAMNIZEBERIT—EANDTIEADEAIZDNTIE doc/howto T4
LYKJBE T BIODATABASE ACCESS [ZEBIRLTLNDD TIITIHHREYREZGL (BRE:
doc/howto/html/OBDA Access.html, doc/howto/pdf/OBDA Access.pdf Z7AILbLLY),

IIT.1.1 YEBE—FF—RIR—ZAADTIEA(Bio: :DB: :GenBank, &)

FELGRDFEYET —HIRN—X LDEHT—I~NDT IR (X bioper]l TIEHETT, BBIIDT Iy aE
M IDICTT—RIZFIEARRETY , I\ FE—RFDT7IERATIIERDEIN DA LEREFEREEYR—IT
WET, GeBank oD T—HRREFTIL, 1=EAIEa—F I TFEDOKISIZHYET,

Sgb = new Bio::DB::GenBank () ;

this returns a Seq object :

$seql = $gb->get Seq by id('MUSIGHBAL');
this returns a Seq object :

$seq2 = $gb->get Seq by acc('AF303112');
this returns a SeqIO object :

$seqgio = Sgb->get Stream by id(["J00522","AF303112","2981014"]);
SeqIO ATV HRDFERKIZOVTIX 111.2.1 S BLTHESLY,

bioperl TIXIRFE. GenBank. GenPept, RefSeq. SwissProt, EMBL T—#R—XADEIIREFHHR—F
LTWVET . sEMISDOL T,

Bio::DB::GenBank,Bio::DB: :GenPept,Bio::DB::SwissProt,Bio::DB::RefSeq.Bio::DB::E
BML D manpage S BL TSN, T—IR—RXDIF—ELTHDT—IRN—RFIBETHILITEET . N
X452 ExPaSy TELDIZ—H$H S swissProt [CBERLET . FA—HILDIT7ATI4—ILDEADTOY
IH—N—DEREF T avtHYET,

EBI DY —/N\—[ZHT1)—%3%IT5.Bio: :DB: :RefSeq BV 21— /LEEL T, NCBI) RefSeq ERIIDRAHR—
FENTWET , RefSeq RRICEAL TN OMDEENHYET O THESRIZBio: :DB: :RefSeq M manpage
#S L TZELY, GenBank TM RefSeq® ID

(E"NT_".UNC_"OUNG_"LUNM_MOUNP_MO XML "XR_ML"XP_"TIRFRUERT R
http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html S88),Bio: :DB: :GenBank [dCh oD
IDDIVRIZDOWTHRRTEFTA, RLEDEKRTD GenBank TR THEWVWIEFDIZEH TEN TS,
"CONTIG"IVRJ)ZEMRYT H"NT "TIHEDIVNIZEZRE T HICDONTDHFMIE Bio: :DB: :GenBank M
manpage S RLTZELY,

bioperl [TYE—FD Ace T—ER—RARFRLHFHR—FLTNET , COBBETIINEBD AcePerl EDa2—ILD
FEZERLET, aceperl EVa—I)L& http://stein.cshl.org/AcePerl/ M HoO—KLAV A —
VT BREABYET,

JE—FDT—ER—RIZTZIERTBIENDES21—ILIE, EBI [Tdbfetch ROYTrDHT)EEITS
BioFetch M&HYZET , EMBL, GenBank, SWALL T—AR—AMNKZ . BT+ —IVrHBNFIARN)—L
(SeqioATVxIM) HBWN L "tempfiles" T, TN EFRETEET .

FHM(X Bio: :DB: :BioFetch M manpage SN &,

IIT.1.2 B—AJILT—HAR—X (Bio::Index::*, bp index.pl, bp fetch.pl, Bio::DB::*)DA
UTYIREET VER

Bio::Index M Bio::DB::Fasta A7 VTV MDFERICKYO—HILESIT—F2T7MILIZbioperl [FENT
NAVTYIAFFHITAET . Bio: : Index [CkY, GenBank, SwissProt, Pfam, EMBL, FASTA DE 5| T+ —
TYMIRHIELTEY ., BBDYE—FT—IR—IADT IR EIL Iz FETT VAN AEETT fzEX E.
FASTA I7AIDAUTVIREINT=TZIYRIFZAIVIZT VAL ZDEADD1T7AINERERT DIHFEIERYY)
THIUTDOLSIZHRYET,

script 1: create the index
use Bio::Index::Fasta; # using fasta file format

use strict; # some users have reported that this is necessary

my $Index File Name = shift;

my $inx = Bio::Index::Fasta->new (
-filename => $Index File Name,
-write flag => 1);

$inx->make index (RARGV) ;

script 2: retrieve some files
use Bio::Index::Fasta;

use strict; # some users have reported that this is necessary

my $Index File Name = shift;

my $inx = Bio::Index::Fasta->new($Index File Name);
foreach my $id (@ARGV) {
my S$seq = S$inx->fetch($id); # Returns Bio::Seqg object

do something with the sequence

FUBMTILELINGAVTYIRV AT LEFRLERT S5 EIC[E bioperl BEAMICEFEND
scripts/index TALYVMIADZDDHUTILAYY) T bp index.PLS.bp fetch.PLS ZSELTZE
W SNBDRTYTMER—ANTFANDAUT YIRS AT LRED T TL—hERHTLES,

FASTA 74— YR I7AINEATIIALYIT)—,F B1=BIZbioperl [EBio: :DB: :Fasta HHR—ILT
WET,Bio::Index: :Fasta lZBITWLWET M, BLDAYYRESR—FLTWET . HIZIE,

use Bio::DB::Fasta;

use strict;

my $db = Bio::DB::Fasta->new(S$file); one file or many files

my S$segstring = S$db->seq($id); get a sequence as string
my S$seqobj = $db->get Seq by id($id);

my S$desc = $db->header ($id);

get a PrimarySeqg obj

H oH= o

get the header, or description line
COEDI—ILDTARTOHBEICELTILBio: :DB: : Fasta M manpage SN &,

EBELMED1—ILH, "gi 14556644 |gb|X45555"DXFIHIAD gi FEEDKS% 1D ELT FASTA DAYHE —
THRESNTWAXFINEIRETHCENTEET, "test. fa"MD FEED&KS% Fasta T+—<vMEEFHITIE,

Both modules also offer the user the ability to designate a specific string
within the fasta header as the desired id, such as the gi number within the
string "~ gi|4556644|gb|X45555"'"'. Consider the following fasta-formatted
sequence, in "~ test.fa'':

>gi | 523232 |emb|AACL12345|sp|D12567 titin fragment
MHRHHRTGYSAAYGPLKJHGYVHFIMCVVVSWWASDVVTYIPLLLNNSSAGWKRWWWITIFGGE
GHGHHRTYSALWWPPLKJHGSKHFILCVKVSWLAKKERTYIPKKILLMMGGWWAAWWW I

Bio::Index::Fasta &Bio::DB: :Fasta [dT74ILTlIX. BREDF—ELT Fasta DAYF—DREID
M1 EWVET ., COFITIE"g1 1523232 |emb | AAC12345 | sp | D12567" T, F—ELTEYERLGEDIZD
EDMD IDTY, "test.fa"I7AI)LE test . fa. idx"EMEIENBA T IIRT7AILTlEFx—IL SwissProt

HBENE " sp"THY ., a—FHIZELUTIZRLET,
By default Bio::Index::Fasta and Bio::DB::Fasta will use the first "~ “word'' they

encounter in the fasta header as the retrieval key, in this case " "gi|523232]|
emb |AAC12345|sp|D12567"''. What would be more useful as a key would be a single
id. The code below will index the "~ “test.fa'' file and create an index file
called " “test.fa.idx'' where the keys are the Swissprot, or "~ 'sp'', identifiers.
$ENV{BIOPERL_INDEX_TYPE} = "SDBM_File";

look for the index in the current directory

$ENV{BIOPERL_INDEX} =".";

my $file name = "test.fa";

my $inx = Bio::Index::Fasta->new(-filename => $file name . ".idx",

-write flag => 1);
pass a reference to the critical function to the Bio::Index object
$inx->id parser (\&get id);

make the index

$inx->make index (Sfile name);

here is where the retrieval key is specified
sub get id {

my Sheader = shift;

Sheader =~ /">.*\bsp\| ([A-2]\d{5}\b)/;

$1;

CCCERINEFRET HAEIX. Bio: :SeqA TP HREFRANT,

Here is how you would retrieve the sequence, as a Bio::Seqg object:

my $seq = S$inx->fetch ("D12567");
print $seg->seq;

SwissProt M ID M GI F 2/ \—, FASTA DAYF —ZRAWTEIIEZREFTIHES EHD c1 7o/ —&

SwissProt @ IDIEAYA —IZESELHET HM?

What if you wanted to retrieve a sequence using either a Swissprot id or a gi
number and the fasta header was actually a concatenation of headers with
multiple gi's and Swissprots?

>gi| 523232 |emb|AAC12345|sp|D12567|gi|7744242|sp|V11223 titin fragment

ZOHBEEMREL. ID N—HY—AYYRIZHEET BHIZIE.
Modify the function that's passed to the id parser method:

sub get id {

my Sheader = shift;

my (@sps) = S$header =~ /*>.*\bsp\| ([A-Z]\d{5})\b/g;
$Sheader =~ /gi\| (\d+)\b/g;

return (@sps,@gis);

my (@gis)

Bio::DB::Fasta EVa—/LIERILIREZRALSH. SGEIFTILEL S, 1z&AIE.
The Bio::DB::Fasta module uses the same principle, but the syntax is slightly
different, for example:

my $db = Bio::DB::Fasta->new('test.fa', -makeid=>\&make my id);
my $seqobj = $db->get Seqg by id($id);

sub make my id {

my $description line = shift;
Sdescription line =~ /gi\| (\d+)\|emb\ | (\w+)/;
(81,82);

a7 bioperl AV A= TIHIL—23F I T—ER—IXTOERIINDT VLR ET—2DEMEHR—FLTL
FHA LML, MHBID bioperl-db T4 TN EAWNSIEIZKY COMBENTIEETY , SFMIE 1v.3 EIZS RO
&

I11.2 T—AR—RET7AILA—RDT+— v EH#
III.2 Transforming formats of database/ file records

I11.2.1 BEHT77AILDEH(SeqIO)
ITIT1.2.1 Transforming sequence files (SeqIO)

ZLDELEDNTNST —2T7+—IVMEADERST—E2DEM | BENDERIBNAF AV THITAIAD
EETT, LML, bioperl M SeqIlo ATV IMIKYZDHAMNNELFHEIZITAET . ZLDTH—T Yk,
Fasta, EMBL, GenBank, Swissprot, PIR, GCG, SCF, phd/phred, Ace, fastq, exp,
chado, or raw (plain sequence) |ZEALTUWEDDHDIWEITILFTILIZ7AILDEIIDRA L) —L%E
Seqlo [IHmELENTEET , Ff-. F(L—RIF7AILTH B, alf, ztr, abi, ctf, FLTctr T+ —<vh
{IN—RGBHIENTEET , SeqlO IT—ERFINGFTEAAENDE., TOEFIV—RITEKELT,

Seq. PrimarySeq.RichSeqA 7V zHIMMERELThioperl TIRSITENTEET HAT

A common - and tedious - bioinformatics task is that of converting sequence data
among the many widely used data formats. Bioperl's SeqIO object, however, makes
this chore a breeze. SeqIO can read a stream of sequences - located in a single
or in multiple files - in a number of formats: Fasta, EMBL, GenBank, Swissprot,
PIR, GCG, SCF, phd/phred, Ace, fastq, exp, chado, or raw (plain sequence). SeqlIO
can also parse tracefiles in alf, ztr, abi, ctf, and ctr format Once the
sequence data has been read in with SeqgIO, it is available to bioperl in the
form of Seq, PrimarySeq, or RichSeqg objects, depending on what the sequence
source is. Moreover, the sequence objects can then be written to another file
(again using SeqIO) in any of the supported data formats making data converters
simple to implement, for example:

use Bio::SeqIO;
$in = Bio::SeqlO->new(-file => "inputfilename",
-format => 'Fasta');
Sout = Bio::SeqlO->new(-file => ">outputfilename",
-format => 'EMBL');
while (my $seqg = $in->next seqg()) {Sout->write seqg($seq); }

In addition, the perl " “tied filehandle'' syntax is available to SeqIO, allowing
you to use the standard <> and print operations to read and write sequence
objects, eg:

S$in Bio::SeqIO->newFh(-file => "inputfilename"
-format => 'fasta');
Sout = Bio::SeqIO->newFh(-format => 'embl');

print Sout $ while <$in>;

If the " "-format'' argument isn't used then Bioperl will try to determine the
format based on the file's suffix, in a case-insensitive manner. If there's no
suffix available then SeqgIO will attempt to guess the format based on actual
content. Here is the current set of suffixes:

Format Suffixes Comment
fasta fastal|fast|seqglfalfsalntlaa Fasta
genbank gb|gbank|genbank|gbs|gbk Genbank
scf scf SCF tracefile
pir pir PIR

embl embl|ebl|emb|dat EMBL

raw txt plain
gcg gcg GCG

ace ace ACeDB
bsml bsm|bsml BSML XML
game GAME XML

swiss swiss|sp SwissProt

rhd
fastqg

Locuslink

qual
chado
tinyseq
exp
abi*
alf~*
ctf*
ztr*

pln*

phd|phred
fastqg

exp
abi
alf
ctf
ztr

pln

Phred

Fastqg

LL tmpl format

Phred quality file
Chado XML

NCBI TinySeqg XML
Staden experiment file
ABT
ALF
CTF
ZTR

Staden plain tracefile

tracefile
tracefile
tracefile

tracefile

* These formats require the bioperl-ext package and the io lib library from the
Staden package

For more information see the Bio::SeqIO manpage or the SeqIO HOWTO
(http://bioperl.org/HOWTOs/html/SeqIlO.html) .

ITIT.2.2 Transforming alignment files

(AlignIO)

Data files storing multiple sequence alignments also appear in varied formats.

AlignIO is the bioperl object for
patterned on the SeqIO object and
the commands in SeqIO. Just as in
and

TT-file'!

“"—format'' options:

use Bio::AlignIO;

my $io =

If the

Bio::AlignIO->new(-file

“—format''
format based on the file's suffix,

—-format => "clustalw");

current set of suffixes:

Format

bl2seq
clustalw
empboss*
fasta

maf

mase

mega

meme
metafasta
msf

nexus
pfam
phylip
prodom
psi

selex
stockholm

Suffixes

aln
water |needle
fastal|fastl|seqglfalfsalnt]|aa

maf

meqg | mega

meme

msf|pileup|gcg

nexus | nex

pfam|pfm
phylip|phlp|phyl|phylphy|ph

psi

selex|slx|selx|slex|sx

conversion of alignment files.
its commands have many of the same names as
SeqIO the AlignIO object can be created with

AlignIO 1is

=> "receptors.aln",

argument isn't used then Bioperl will try and determine the
in a case-insensitive manner.

Here 1is the

Comment

Seaview

GCG

interleaved

PSI-BLAST
HMMER

*water, needle, matcher, stretcher, merger, and supermatcher See IV.2.1 on
EMBOSS for more information

Unlike SeqgIO AlignIO cannot create output files in every format. AlignIO
currently supports output in these 6 formats: fasta, mase, selex, clustalw, msf/
gcg, and phylip (interleaved).

Another significant difference between AlignIO and SeqgIO is that AlignIO handles
IO for only a single alignment at a time but SeqlO.pm handles IO for multiple
sequences in a single stream. Syntax for AlignIO is almost identical to that of
SeqlIO:

use Bio::AlignIO;
$in = Bio::AlignIO->new(-file => "inputfilename" ,

—-format => 'fasta');

Sout = Bio::AlignIO->new(-file => ">outputfilename",
-format => 'pfam');
while (my $aln = $in->next aln()) { Sout->write aln(Saln); }

The only difference is that the returned object reference, $aln, is to a
SimpleAlign object rather than to a Seg object.

AlignIO also supports the tied filehandle syntax described above for SegIO. See
the Bio::AlignIO manpage, the Bio::SimpleAlign manpage, and section III.5 on
SimpleAlign for more information.

ITII.3 Manipulating sequences

Bioperl contains many modules with functions for sequence analysis. And if you
cannot find the function you want in bioperl you may be able to find it in
EMBOSS or PISE , which are accessible through the bioperl-run auxiliary library
(see IV.2.1).

ITII.3.1 Manipulating sequence data with Seqg methods

OK, so we know how to retrieve sequences and access them as sequence objects.
Let's see how we can use sequence objects to manipulate our sequence data and
retrieve information. Seqg provides multiple methods for performing many common
(and some not-so-common) tasks of sequence manipulation and data retrieval. Here
are some of the most useful:

These methods return strings or may be used to set values:

$segobj->display id(); the human read-able id of the sequence

Ssegobj->seq() ; string of sequence
$segobj->subseq(5,10); part of the sequence as a string
$segobj->accession number () ; when there, the accession number
$seqobj->alphabet () ;

$segobj->primary id(); # a unique id for this sequence irregardless

H= oW = S

one of 'dna', 'rna', 'protein'

of its display id or accession number

$Sseqgobj->desc () ; # a description of the sequence

It is worth mentioning that some of these values correspond to specific fields
of given formats. For example, the display id method returns the LOCUS name of a
Genbank entry, the (\S+) following the > character in a Fasta file, the ID from
a SwissProt file, and so on. The desc() method will return the DEFINITION line
of a Genbank file, the line following the display id in a Fasta file, and the DE
field in a SwissProt file.

The following methods return an array of Bio::SeqFeature objects:

$segobj->get SegFeatures; # The 'top level' sequence features
$seqgobj->get all SegFeatures; # All sequence features, including sub-

seq features

For a comment annotation, you can use:

use Bio::Annotation::Comment;
$seg->annotation->add Annotation ('comment',

Bio::Annotation: :Comment->new (-text => 'some description');

For a reference annotation, you can use:

use Bio::Annotation::Reference;
$seg->annotation->add Annotation ('reference',
Bio::Annotation: :Reference->new (-authors => 'authorl,author2',
-title => 'title line’',
-location => 'location line',
-medline => 998122);

Sequence features will be discussed further in section III.7 on machine-readable
sequence annotation. A general description of the object can be found in the
Bio::SegFeature: :Generic manpage, and a description of related, top-level
annotation is found in the Bio::Annotation::Collection manpage.

Additional sample code for obtaining sequence features can be found in the
script gb2features.pl in the subdirectory examples/DB. Finally, there's a HOWTO
on features and annotations (http://bioperl.org/HOWTOs/html/Feature-
Annotation.html) and there's a section on features in the FAQ
(http://bioperl.org/Core/Latest/fag.html#5) .

The following methods returns new sequence objects, but do not transfer the
features from the starting object to the resulting feature:

$seqgobj->trunc(5,10); # truncation from 5 to 10 as new object
S$segobj->revcom; # reverse complements sequence

$seqobj->translate; # translation of the sequence

Note that some methods return strings, some return arrays and some return
objects. See the Bio::Seq manpage for more information.

Many of these methods are self-explanatory. However, bioperl's flexible
translation methods warrant further comment. Translation in bioinformatics can
mean two slightly different things:

1. Translating a nucleotide sequence from start to end.

2. Taking into account the constraints of real coding regions in mRNAs.

The bioperl implementation of sequence-translation does the first of these tasks
easily. Any sequence object which is not of alphabet 'protein' can be translated
by simply calling the method which returns a protein sequence object:

$translationl = Smy seq object->translate;

However, the translate method can also be passed several optional parameters to
modify its behavior. For example, the first two arguments to translate() can be
used to modify the characters used to represent stop (default '*') and unknown
amino acid ('X'). (These are normally best left untouched.) The third argument

determines the frame of the translation. The default frame is ~"0''. To get
translations in the other two forward frames, we would write:

$translation2 = Smy seq object->translate (undef,undef,1);

$translation3 = $Smy seq object->translate (undef,undef, 2);

The fourth argument to translate() makes it possible to use alternative genetic
codes. There are currently 16 codon tables defined, including tables for
'Vertebrate Mitochondrial', 'Bacterial', 'Alternative Yeast Nuclear' and
'Ciliate, Dasycladacean and Hexamita Nuclear' translation. These tables are
located in the object Bio::Tools::CodonTable which is used by the translate
method. For example, for mitochondrial translation:

$human mitochondrial translation = S$seq obj->translate (undef,undef,undef, 2);

If we want to translate full coding regions (CDS) the way major nucleotide
databanks EMBL, GenBank and DDBJ do it, the translate method has to perform more
tricks. Specifically, 'translate' needs to confirm that the sequence has
appropriate start and terminator codons at the beginning and the end of the
sequence and that there are no terminator codons present within the sequence. In
addition, if the genetic code being used has an atypical (non-ATG) start codon,
the translate method needs to convert the initial amino acid to methionine.
These checks and conversions are triggered by setting the fifth argument of the
translate method to evaluate to " "true''.

If argument 5 is set to true and the criteria for a proper CDS are not met, the
method, by default, issues a warning. By setting the sixth argument to evaluate

to “true'', one can instead instruct the program to die if an improper CDS 1is
found, e.g.
Sprotein object = Scds->translate (undef,undef,undef,undef, 1, 'die if errors');

See the Bio::Tools::CodonTable manpage for related details.
II1.3.2 Obtaining basic sequence statistics (SegStats, SegWord)

In addition to the methods directly available in the Seqg object, bioperl
provides various helper objects to determine additional information about a
sequence. For example, SegStats object provides methods for obtaining the
molecular weight of the sequence as well the number of occurrences of each of
the component residues (bases for a nucleic acid or amino acids for a protein.)
For nucleic acids, SegStats also returns counts of the number of codons used.
For example:

use SegStats;

$seq stats = Bio::Tools::SegStats->new(Sseqobj);
$weight = $seq stats->get mol wt();

$monomer ref = $seq stats->count monomers () ;

$codon ref = $seq stats->count codons(); # for nucleic acid sequence

Note: sometimes sequences will contain ambiguous codes. For this reason,
get mol wt() returns a reference to a two element array containing a greatest
lower bound and a least upper bound of the molecular weight.

The SeqWords object is similar to SegStats and provides methods for calculating
frequencies of " “words'' (e.g. tetramers or hexamers) within the sequence. See
the Bio::Tools::SegStats manpage and the Bio::Tools::SegWords manpage for more
information.

IIT.3.3 Identifying restriction enzyme sites (Bio::Restriction)

Another common sequence manipulation task for nucleic acid sequences is locating
restriction enzyme cutting sites. Bioperl provides the Bio::Restriction::Enzyme,
Bio::Restriction::EnzymeCollection, and Bio::Restriction::Analysis objects for
this purpose. These modules replace the older module
Bio::Tools::RestrictionEnzyme. A new collection of enzyme objects would be
defined like this:

use Bio::Restriction::EnzymeCollection;

my Sall collection = Bio::Restriction::EnzymeCollection;

Bioperl's default Restriction::EnzymeCollection object comes with data for more
than 500 different Type II restriction enzymes. A list of the available enzyme

names can be accessed using the available list() method, but these are just the
names, not the functional objects. You also have access to enzyme subsets. For

example to select all available Enzyme objects with recognition sites that are

six bases long one could write:

my $six cutter collection = $all collection->cutters(6);
foreach my $enz ($six cutter collection) {
print Senz->name,"\t",Senz->site,"\t", Senz->overhang seq,"\n";

prints name, recognition site, overhang

There are other methods that can be used to select sets of enzyme objects, such
as unique cutters() and blunt enzymes(). You can also select a Enzyme object by
name, like so:

my $ecori_enzyme = $all_collection—>get_enzyme('EcoRI');

Once an appropriate enzyme has been selected, the sites for that enzyme on a
given nucleic acid sequence can be obtained using the fragments () method. The
syntax for performing this task is:

use Bio::Restriction::Analysis;

my Sanalysis = Bio::Restriction::Analysis->new(-seq => S$seq);
where $seqg is the Bio::Seq object for the DNA to be cut
@fragments = Sanalysis->fragments ($enzyme) ;

and @fragments will be an array of strings

To get information on isoschizomers, methylation sites, microbe source, vendor
or availability you will need to create your EnzymeCollection directly from a
REBASE file, like this:

use Bio::Restriction::IO;
my $re io = Bio::Restriction::IO->new(-file=>$file,-format=>'withrefm');
my Srebase collection = $re io->read;

A REBASE file in the correct format can be found at

ftp://ftp.neb.com/pub/rebase, it will have a name like " “withrefm.308''. If need
be you can also create new enzymes, like this:

my Sre = new Bio::Restriction::Enzyme (-enzyme=>'BioRI', -seq=>'GG"AATTCC');
For more informatation see the Bio::Restriction::Enzyme manpage, the
Bio::Restriction: :EnzymeCollection manpage, the Bio::Restriction::Analysis

manpage, and the Bio::Restriction::I0 manpage.

ITITI.3.4 Identifying amino acid cleavage sites (Sigcleave)

For amino acid sequences we may be interested to know whether the amino acid
sequence contains a cleavable signal sequence for directing the transport of the
protein within the cell. SigCleave is a program (originally part of the EGCG
molecular biology package) to predict signal sequences, and to identify the
cleavage site based on the von Heijne algorithm.

The threshold setting controls the score reporting. If no value for threshold is
passed in by the user, the code defaults to a reporting value of 3.5. SigCleave
will only return score/position pairs which meet the threshold limit.

There are 2 accessor methods for this object. signals() will return a perl hash
containing the sigcleave scores keyed by amino acid position. pretty print()
returns a formatted string similar to the output of the original sigcleave
utility.

The syntax for using Sigcleave is as follows:

create a Seq object, for example:
$Sseqgobj = Bio::Seg->new(-seq => "AALLHHHHHHGGGGPPRTTTTTVVVVVVVVVVVVVVV") ;

use Bio::Tools::Sigcleave;

$sigcleave object = new Bio::Tools::Sigcleave

(-seq => S$seqobij,
-threshold => 3.5,
-desc => 'test sigcleave protein seq',
-type => 'AMINO'
);
$raw_results = Ssigcleave object->signals;

Sformatted output = $sigcleave object->pretty print;

Note that the " “type'' in the Sigcleave object is "~ "amino'' whereas in a Seqg
object it would be called " "protein''. Please see the Bio::Tools::Sigcleave
manpage for details.

ITIT.3.5 Miscellaneous sequence utilities: 0OddCodes, SegPattern
OddCodes:

For some purposes it's useful to have a listing of an amino acid sequence
showing where the hydrophobic amino acids are located or where the positively
charged ones are. Bioperl provides this capability via the module

Bio::Tools: :0ddCodes.

For example, to quickly see where the charged amino acids are located along the
sequence we perform:

use Bio::Tools::0ddCodes;
$oddcode obj = Bio::Tools::0ddCodes->new ($amino obj);
$output = S$oddcode obj->charge();

The sequence will be transformed into a three-letter sequence (A,C,N) for
negative (acidic), positive (basic), and neutral amino acids. For example the
ACDEFGH would become NNAANNC.

For a more complete chemical description of the sequence one can call the
chemical () method which turns sequence into one with an 8-letter chemical
alphabet { A (acidic), L (aliphatic), M (amide), R (aromatic), C (basic), H
(hydroxyl), I (imino), S (sulfur) }:

$output = S$oddcode obj->chemical () ;
In this case the sample sequence ACDEFGH would become LSAARAC.

OddCodes also offers translation into alphabets showing alternate
characteristics of the amino acid sequence such as hydrophobicity,

" functionality'' or grouping using Dayhoff's definitions. See the documentation
in the Bio::Tools::0ddCodes manpage for further details.

SegPattern:

The SegPattern object is used to manipulate sequences using perl regular
expressions. A key motivation for SegPattern is to have a way of generating a
reverse complement of a nucleic acid sequence pattern that includes ambiguous
bases and/or regular expressions. This capability leads to significant
performance gains when pattern matching on both the sense and anti-sense strands
of a query sequence are required. Typical syntax for using SeqgPattern is shown
below. For more information, there are several interesting examples in the
script seq pattern.pl in the examples/tools directory.

use Bio::Tools::SegPattern;

' (CCCCT)N{1,200} (agggg)N{1,200} (agggqg) ';

$pattern obj = new Bio::Tools::SegPattern(-SEQ => Spattern,
-TYPE => 'dna');

Spattern

$pattern obj2 = $pattern obj->revcom();

$pattern obj->revcom(l); # returns expanded rev complement pattern.
More detail can be found in the Bio::Tools::SegPattern manpage.
II1.3.6 Converting coordinate systems (Coordinate::Pair, RelSegment)

Coordinate system conversion is a common requirement, for example, when one
wants to look at the relative positions of sequence features to one another and
convert those relative positions to absolute coordinates along a chromosome or
contig. Although coordinate conversion sounds pretty trivial it can get fairly
tricky when one includes the possibilities of switching to coordinates on
negative (i.e. Crick) strands and/or having a coordinate system terminate
because you have reached the end of a clone or contig. Bioperl has two different
approaches to coordinate-system conversion (based on the modules
Bio::Coordinate::Pair and Bio::DB::GFF::RelSegment, respectively).

The Coordinate::Pair approach is somewhat more "~ “low level''. With it, you
define an input coordinate system and an output coordinate system, where in each
case a coordinate system is a triple of a start position, end position and
strand. The end position is especially important when dealing with unfinished
assemblies where the coordinate system ends when one reaches the end of the
sequence of a clone or contig. Once one has defined the two coordinate systems,
one defines a Coordinate::Pair to map between them. Then one can map positions
between the coordinates systems with code such as this:

$input coordinates = Bio::Location::Simple->new

(-seq id => 'propeptide', -start => 1000, -end => 2000, -strand=>1);
S$output coordinates = Bio::Location::Simple->new

(-seq_id => 'peptide', -start => 1100, -end => 2100, -strand=>1);
Spair = Bio::Coordinate::Pair->new

(-in => $input coordinates , -out => Soutput coordinates)

Spos = Bio::Location::Simple->new (-start => 500, -end => 500);

Sres = Spair->map ($pos);

S$converted start = S$res->start;

In this example S$res is also a Bio::Location object, as you'd expect. See the
documentation for Bio::Coordinate::Pair and Bio::Coordinate::GeneMapper for more
details.

The Bio::DB::GFF::RelSegment approach is designed more for handling coordinate
transformations of sequence features rather than for transforming arbitrary
coordinate systems. With Bio::DB::GFF::RelSegment you define a coordinate system

relative to a specific feature (called the " "refseq''). You also have access to
the absolute coordinate system (typically of the entire chromosome.) You can
determine the position of a feature relative to some other feature simply by
redefining the relevant reference feature (i.e. the " “refseq'') with code like
this:

$db = Bio::DB::GFF->new (-dsn => 'dbi:mysqgl:elegans’',

—adaptor => 'dbi:mysqglopt');

S$Ssegment = S$db->segment ('ZK909') ;

Srelative start = $segment->start; # Srelative start = 1;

Now retrieve the start position of ZK909 relative to feature ZK337
Ssegment->refseq('ZK337");

$relative start = $segment->start;

Now retrieve the start position of ZK909 relative to the entire chromosome

$absolute start = S$segment->abs start;

This approach is convenient because you don't have to keep track of coordinates
directly, you just keep track of the name of a feature which in turn marks the
coordinate-system origin. However, this approach does require that you have
stored all the sequence features in GFF format. Moreover,
Bio::DB::GFF::RelSegment has been principally developed and tested for
applications where all the sequence features are stored in a Bioperl-db
relational database. However, if one wants to use the Bio:DB::GFF machinery
(including its coordinate transformation capabilities) without building a local
relational database, this is possible by defining the 'database' as having an
adaptor called 'memory', e.g.

$db = Bio::DB::GFF->new('-adaptor' => 'memory');

For more details on coordinate transformations and other GFF-related
capabilities in Bioperl see the Bio::DB::GFF::RelSegment manpage, the
Bio::DB::GFF manpage, and the test file t/BioDBGFF.t.

IT1T.4 FELIERIIDOEE
AISADHETEEKHDEINEFELT HEINEFRET HENTFEMEDEKRNMLGEZENCRI [T&>THIDF
JVIZRAFE SNz BLAST 70T S LIEZDLSHERIDRFEIZDVTESALSNTINVES , BLAST #E{TLIZY.
BLAST IZKYH AN BB REFFEREVIVHELIZYT E=0DLLKIONDEY1—/L% bioperl &bioperl ME
TNV —DIERELET,

IIT.4.1 BLAST MEFT(RemoteBlast.pmZFRALVT)
RemoteBlast ATV IrEF>TNCBI £E® BLAST DY E—FE{TH bioperl [FHR—FLET,
JE—F BLAST EfTD=HD AV TR EBFITUTDLSILELCTT,

$remote_blast = Bio::Tools::Run::RemoteBlast->new (

-prog => 'blastp',-data => 'ecoli',6 -expect => 'le-10');
$r = Sremote blast->submit blast("t/data/ecolitst.fa");
while (Q@rids = Sremote blast->each rid) {
foreach $rid (@rids) {Src = Sremote blast->retrieve blast($rid);}

}
DE—F23TDUKODDINTA—E—EEZ VMR LRI IV RERAF-LMEE DHIE,
$Bio::Tools::Run::RemoteBlast::HEADER{'MATRIX_NAME'} = 'BLOSUM25';
%D CGI INTA—F—DRMIAIZDONTIE,
http://www.ncbi.nlm.nih.gov/BLAST/Doc/urlapi.html

LERDRIVTEM2DDEA R I TSI EITFHLTLEEW, BLAST DEITEREDEH L TY , NCBI
BLAST4#ZE(CAWNSEEIL BLAST RITEEREBIMRERITHAENEETT,

Src AT YMEBLAST $EREEH.Bio: :Tools: :BPlite $ALMEBio: : SearchIO IZTHIYHT IEA
TEFET,N—23V 1.0 LR TIET I MDA T IS searchI0FRLET . AT IMNIATEEZ BIC
I& readmethod INGA—FEEZZLENHYFET A BLAST FERDYIYHLIZIE Bio: : Searchio AHfREH
FT MDA T IMISHEDN—D3 TIERIESNFE R A, BLAST RITARYILIz W ERER T 50—KH . E
BEITLIZEZITNCBI H—N\—ZF DD "sleep" IL—TFEBMTHIENZD R TEERIZFHELNASTL
FTEHEDIZITVDESTYT, FMIL. FEERDTERYUTRDH| 22 hhBio: :Tools:Run: :RemoteBlast
manpage #SRBNDI L,

IJE—FBLAST TIHHFERT A= D#EXELTIE. sStandAloneBlast, Custalw, T-Coffee TIHZEESDE
FLEBEOEESIEVNSTEIZHFETRETT, T RemotoBlast Tl '-prog' => 'blastp'DEKI%H/\
ATOHEEST=NTGA—EARRETHY MO TOT S LTIENA T TS /IRTA—2—[FIENELNSTETT,

III.4.2 Searché& SearchIOZfULVf-BLAST &FASTAFERDYIVHL

EDESIZBLASTREFET(A—AILTHDIWNEX)E—FT, Ff=. perl 1V F—T—RERAWNSHMAWELD)
LTH. BUSEIRT BICIE+ R T ELZELT —INIR O TS, Blast §ERE/N—RXTF 56|, bioperl (&
Search.pm*® SearchIO.pm, BPlite.pm(ZDIAFT—IEIERTHS.BPpsilite, BPbl2seq) DKIAELD
OMDELEZF Tz HFERELTWVET ,Blast EFASTAFERD/S—RXEA®D bioperl MDEKRMEA L 2—
JI—RA TS Search & SearchIoO ATV IMMIDWTIZZOEIZERMLTLVET , HLVRD BPLite [ZDLY
TIF111.4. 3 M TRABLTVET FRDRTEYR—IAENS SearchTOZEITEEFHELET,

The Search and SearchIO modules provide a uniform interface for parsing
sequence-similarity-search reports generated by BLAST (in standard and BLAST XML
formats), PSI-BLAST, RPS-BLAST, bl2seq and FASTA. The SearchIO modules also
provide a parser for HMMER reports and in the future, it is envisioned that the
Search/SearchIO syntax will be extended to provide a uniform interface to an
even wider range of report parsers including parsers for Genscan.

Parsing sequence-similarity reports with Search and SearchIO is straightforward.
Initially a SearchIO object specifies a file containing the report(s). The
method next result reads the next report into a Search object in just the same
way that the next seq method of SeqlIO reads in the next sequence in a file into
a Seq object.

Once a report (i.e. a SearchIO object) has been read in and is available to the
script, the report's overall attributes (e.g. the query) can be determined and
its individual hits can be accessed with the next hit method. Individual high-

scoring segment pairs for each hit can then be accessed with the next hsp
method. Except for the additional syntax required to enable the reading of
multiple reports in a single file, the remainder of the Search/SearchIO parsing
syntax is very similar to that of the BPlite object it is intended to replace.
Sample code to read a BLAST report might look like this:

Get the report

$searchio = new Bio::SearchIO (-format => 'blast',
-file => $blast report);
$result = $searchio->next result;

Get info about the entire report
$result->database name;

$algorithm type = S$Sresult->algorithm;

get info about the first hit

$hit = S$result->next hit;

$hit name = S$hit->name ;

get info about the first hsp of the first hit
$hsp = S$hit->next hsp;

$hsp start = $hsp->query->start;
For more details there is a good description of how to use SearchIO at
http://www.bioperl.org/HOWTOs/html/SearchIO.html or in the docs/howto
subdirectory of the distribution. Additional documentation can be found in the
Bio::SearchIO::blast manpage, the Bio::SearchIO::psiblast manpage, the
Bio::SearchIO::blastxml manpage, the Bio::SearchIO::fasta manpage, and the
Bio::SearchIO manpage. There is also sample code in the examples/searchio
directory which illustrates how to use SearchIO. And finally, there's a section
with SearchIO questions in the FAQ (http://bioperl.org/Core/Latest/fag.html#3).

I1I1.4.3 Parsing BLAST reports with BPlite, BPpsilite, and BPbl2seq

Bioperl's older BLAST report parsers - BPlite, BPpsilite, BPbl2seqg and Blast.pm
- are no longer supported but since legacy Bioperl scripts have been written
which use these objects, they are likely to remain within Bioperl for some time.

Much of the user interface of BPlite is very similar to that of Search. However
accessing the next hit or HSP uses methods called next Sbjct and next HSP,
respectively - in contrast to Search's next hit and next hsp.

BPlite

The syntax for using BPlite is as follows where the method for retrieving hits
is now called nextSbjct() (for "~ “subject''), while the method for retrieving
high-scoring-pairs is called nextHSP() :

use Bio::Tools::BPlite;

Sreport = new Bio::Tools::BPlite (-fh=>*STDIN) ;

Sreport->query;

while (my $sbjct = Sreport->nextSbjct) {
$sbjct->name;

while (my S$hsp = $sbjct->nextHSP) { print S$hsp->score,"\n"; }

A complete description of the module can be found in the Bio::Tools::BPlite
manpage.

BPpsilite

BPpsilite and BPbl2seqg are objects for parsing (multiple iteration) PSIBLAST

reports and Blast bl2seq reports, respectively. They are both minor variations
on the BPlite object. See the Bio::Tools::BPbl2seq manpage and the
Bio::Tools::BPpsilite manpage for details.

The syntax for parsing a multiple iteration PSIBLAST report is as shown below.
The only significant additions to BPlite are methods to determine the number of
iterated blasts and to access the results from each iteration. The results from
each iteration are parsed in the same manner as a (complete) BPlite object.

use Bio::Tools::BPpsilite;
Sreport = new Bio::Tools::BPpsilite (-fh=>*STDIN) ;

Stotal iterations = $report->number of iterations;

$last iteration $report->round(Stotal iterations)

$last iteration ->nextSbjct) {

while (my $sbjct
Ssbjct->name;
while (my S$hsp = $sbjct->nextHSP) {S$hsp->score; }
}

See the Bio::Tools::BPpsilite manpage for details.

BPbl2seq

BLAST bl2seq is a program for comparing and aligning two sequences using BLAST.
Although the report format is similar to that of a conventional BLAST, there are
a few differences. Consequently, the standard bioperl parser BPlite ia unable to
read bl2seq reports directly. From the user's perspective, one difference
between bl2seg and other blast reports is that the bl2seqg report does not print
out the name of the first of the two aligned sequences. Consequently, BPbl2seq
has no way of identifying the name of one of the initial sequence unless it is
explicitly passed to constructor as a second argument as in:

use Bio::Tools::BPbl2seqg;

Sreport = Bio::Tools::BPbl2seg->new(-file => "t/data/dblseq.out",
-queryname => "ALEU HORVU") ;

$hsp = Sreport->next feature;

Sanswer=Shsp->score;

In addition, since there will only be (at most) one subject (hit) in a blZ2seqg
report one should use the method $report->next feature, rather than Sreport-
>nextSbjct->nextHSP to obtain the next high scoring pair. See the
Bio::Tools::BPbl2seq manpage for more details.

Blast.pm

The Bio::Tools::Blast parser has been removed from Bioperl as of version 1.1.
Consequently, the BPlite parser (described in the section III.4.3) or the
Search/SearchIO parsers (section III.4.2) should be used for BLAST parsing
within bioperl. SearchIO is the preferred approach and will be formally
supported in future releases.

IIT.4.4 Parsing HMM reports (HMMER::Results, SearchIO)

Blast is not the only sequence-similarity-searching program supported by
bioperl. HMMER is a Hidden Markov Model (HMM) program that (among other
capabilities) enables sequence similarity searching, from
http://hmmer.wustl.edu. Bioperl does not currently provide a perl interface for
running HMMER. However, bioperl does provide 2 HMMER report parsers, the
recommended SearchIO HMMER parser and an older parser called HMMER::Results.

SearchIO can parse reports generated both by the HMMER program hmmsearch - which

searches a sequence database for sequences similar to those generated by a given
HMM - and the program hmmpfam - which searches a HMM database for HMMs which
match domains of a given sequence. Sample usage for parsing a hmmsearch report
might be:

use Bio::SearchIO;

$Sin = new Bio::SearchIO(-format => 'hmmer',6-file => '123.hmmsearch');

while ($res = $in->next result) {
get a Bio::Search::Result::HMMERResult object
print Sres->query name, " for HMM ", $res->hmm name, "\n";

while ($hit = Sres->next hit) {

print $hit->name, "\n";

while ($hsp = Shit->next hsp) {
print "length is ", S$hsp->length, "\n";
}

}

Purists may insist that the term "~ "hsp'' is not applicable to hmmsearch or
hmmpfam results and they may be correct - this is an unintended consequence of
using the flexible and extensible SearchIO approach. See the
Bio::Search::Result::HMMERResult manpage for more information.

For documentation on the older, unsupported HMMER parser, look at the
Bio::Tools::HMMER: :Results manpage.

I1I1.4.5 Running BLAST locally (StandAloneBlast)

There are several reasons why one might want to run the Blast programs locally -
speed, data security, immunity to network problems, being able to run large
batch runs, wanting to use custom or proprietary databases, etc. The NCBI
provides a downloadable version of blast in a stand-alone format, and running
blast locally without any use of perl or bioperl is completely straightforward.
However, there are situations where having a perl interface for running the
blast programs locally is convenient.

The module Bio::Tools::Run::StandAloneBlast offers the ability to wrap local
calls to blast from within perl. All of the currently available options of NCBI
Blast (e.g. PSIBLAST, PHIBLAST, bl2seq) are available from within the bioperl
StandAloneBlast interface. Of course, to use StandAloneBlast, one needs to have
installed BLAST from NCBI locally as well as one or more blast-readable
databases.

Basic usage of the StandAloneBlast.pm module is simple. Initially, a local blast
factory object is created.

@params = (program => 'blastn',
database => 'ecoli.nt');

Sfactory = Bio::Tools::Run::StandAloneBlast->new (@params) ;

Any parameters not explicitly set will remain as the BLAST defaults. Once the
factory has been created and the appropriate parameters set, one can call one of
the supported blast executables. The input sequence(s) to these executables may
be fasta file(s), a Seq object or an array of Seqg objects, eg

Sinput = Bio::Seg->new(-id =>"test query",
-seq =>"ACTAAGTGGGGG") ;
S$blast report = $factory->blastall (Sinput);

The returned blast report will be in the form of a bioperl parsed-blast object.
The report object may be either a SearchIO, BPlite, BPpsilite, BPbl2seqg or Blast
object depending on the type of blast search - the SearchIO object is returned
by default. The raw blast report is also available.

The syntax for running PHIBLAST, PSIBLAST and bl2seq searches via
StandAloneBlast is also straightforward. See the
Bio::Tools::Run::StandAloneBlast manpage documentation for details. In addition,
the script standaloneblast.pl in the examples/tools directory contains
descriptions of various possible applications of the StandAloneBlast object.
This script shows how the blast report object can access the SearchIO blast
parser directly, e.g.

while (my $hit = Sblast report->next hit) {
while (my $hsp = $sbjct->next hsp) {

print S$hsp->score," ",Shit->name,"\n";

See the sections III1.4.2 and IITI.4.3 for more details on parsing BLAST reports.
III.5 Manipulating sequence alignments (SimpleAlign)

Once one has identified a set of similar sequences, one often needs to create an
alignment of those sequences. Bioperl offers several perl objects to facilitate
sequence alignment: pSW, Clustalw.pm, TCoffee.pm, dpAlign.pm and the bl2seq
option of StandAloneBlast. As of release 1.2 of bioperl, using these modules
(except bl2seq) requires a bioperl auxiliary library (bioperl-ext for pSW and
dpAlign, bioperl-run for the others) and are therefore described in section IV.
Here we describe only the module within the bioperl core package for
manipulating previously created alignments, namely the SimpleAlign module.

The script aligntutorial.pl in the examples/align/ subdirectory is another good
source of information of ways to create and manipulate sequence alignments
within bioperl.

SimpleAlign objects are produced by bioperl-run alignment creation objects (e.g.
Clustalw.pm, BLAST's bl2seq, TCoffee.pm, Lagan.pm, or pSW and dpAlign from the
bioperl-ext package) or they can be read in from files of multiple-sequence
alignments in various formats using AlignIO.

Some of the manipulations possible with SimpleAlign include:

slice(): Obtaining an alignment "~ “slice'', that is, a subalignment inclusive
of specified start and end columns. Sequences with no residues in the slice are
excluded from the new alignment and a warning is printed.

*

column_ from residue number (): Finding column in an alignment where a

specified residue of a specified sequence is located.

*

consensus_string(): Making a consensus string. This method includes an
optional threshold parameter, so that positions in the alignment with lower
percent-identity than the threshold are marked by " "?'''s in the consensus

*

percentage identity(): A fast method for calculating the average percentage

identity of the alignment

*

consensus_iupac(): Making a consensus using IUPAC ambiguity codes from DNA
and RNA.

Skeleton code for using some of these features is shown below. More detailed,
working code is in bptutorial.pl example 13 and in align on codons.pl in the

examples/align directory. Additional documentation on methods can be found in
the Bio::SimpleAlign manpage and the Bio::LocatableSeqg manpage.

use Bio::SimpleAlign;

$aln = Bio::SimpleAlign->new('t/data/testaln.dna');

$threshold percent = 60;

$consensus_with threshold = $aln->consensus_string(Sthreshold percent);
$iupac_consensus = $aln->consensus_iupac(); # dna/rna alignments only
$percent ident = Saln->percentage identity;

$segname = '1433 LYCES';

$pos = S$aln->column from residue number ($seqgname, 14);

II1.6 Searching for genes and other structures on genomic DNA (Genscan, Sim4,
Grail, Genemark, ESTScan, MZEF, EPCR)

Automated searching for putative genes, coding sequences, sequence-tagged-sites
(STS's) and other functional units in genomic and expressed sequence tag (EST)
data has become very important as the available quantity of sequence data has
rapidly increased. Many feature searching programs currently exist. Each
produces reports containing predictions that must be read manually or parsed by
automated report readers.

Parsers for six widely used gene prediction programs - Genscan, Sim4, Genemark,
Grail, ESTScan and MZEF - are available in bioperl. The interfaces for these
parsers are all similar. We illustrate the usage for Genscan and Sim4 here. The
syntax is relatively self-explanatory; see the Bio::Tools::Genscan manpage, the
Bio::Tools::Genemark manpage, the Bio::Tools::Grail manpage, the
Bio::Tools::ESTScan manpage, the Bio::Tools::MZEF manpage, and the
Bio::Tools::Sim4::Results manpage for further details.

use Bio::Tools::Genscan;
Sgenscan = Bio::Tools::Genscan->new(-file => 'result.genscan');

Sgene is an instance of Bio::Tools::Prediction::Gene

Sgene->exons () returns an array of Bio::Tools::Prediction::Exon objects
while ($Sgene = $Sgenscan->next prediction())
{ @exon arr = Sgene->exons(); }

$genscan->close () ;

See the Bio::Tools::Prediction::Gene manpage and the
Bio::Tools::Prediction: :Exon manpage for more details.

use Bio::Tools::Sim4::Results;

$sim4 = new Bio::Tools::Sim4::Results(-file => 't/data/simd.rev’',
-estisfirst => 0);

Sexonset is-a Bio::SegFeature::Generic with Bio::Tools::Sim4::Exons

as sub features

$exonset = $simé4->next exonset;

@exons = Sexonset->sub SeqgFeature();

Sexon is-a Bio::SeqgFeature::FeaturePair

Sexon = 1;
Sexonstart = S$Sexons[$exon]->start();
$estname = Sexons[$exon]->est hit ()->segname () ;

Ssimd->close () ;

See the Bio::SegFeature::Generic manpage and the Bio::Tools::Simé::Exons manpage
for more information.

A parser for the ePCR program is also available. The ePCR program identifies
potential PCR-based sequence tagged sites (STSs) For more details see the
documentation in the Bio::Tools::EPCR manpage. A sample skeleton script for
parsing an ePCR report and using the data to annotate a genomic sequence might
look like this:

use Bio::Tools::EPCR;
use Bio::SeqIlO;
Sparser = new Bio::Tools::EPCR(-file => 'seqgl.epcr');
$seqgio = new Bio::SeqlO(-format => 'fasta', -file => 'seqgl.fa');
$seq = $seqgio->next seq;
while ($feat = S$parser->next feature) {
add EPCR annotation to a sequence

$seg->add SegFeature ($feat);

III.7 Developing machine readable sequence annotations

Historically, annotations for sequence data have been entered and read manually
in flat-file or relational databases with relatively little concern for machine
readability. More recent projects - such as EBI's ENSEMBL project and the
efforts to develop an XML molecular biology data specification - have begun to
address this limitation. Because of its strengths in text processing and
regular-expression handling, perl is a natural choice for the computer language
to be used for this task. And bioperl offers numerous tools to facilitate this
process - several of which are described in the following sub-sections.

III.7.1 Representing sequence annotations (SegFeature,RichSeq,Location)

In Bioperl, most sequence annotations are stored in sequence-feature
(SegFeature) objects, where the SeqgFeature object is associated with a parent
Seq object. A SegFeature object generally has a description (e.g. "~ “exon'',

" “promoter''), a location specifying its start and end positions on the parent
sequence, and a reference to its parent sequence. In addition, a Seqg object can
also have an Annotation object associated with it, which could be used to store
database links, literature references and comments. Creating a new SeqgFeature
and Annotation and associating it with a Seq is accomplished with syntax like:

Sfeat = new Bio::SeqFeature::Generic (-start => 40,
-end => 80,
-strand => 1,
-primary => 'exon',
-source => 'internal');

$seqgobj->add SegFeature($feat); # Add the SegFeature to the Seg object

Once the features and annotations have been associated with the Seq, they can be
with retrieved, eg:

@topfeatures = $segobj->top SegFeatures(); # just top level, or

@allfeatures = $seqgobj->all SegFeatures(); # descend into sub features

$disease annotation = Sannotations->get Annotations('disease');

The individual components of a SegFeature can also be set or retrieved with
methods including:

methods which return numbers

Sfeat->start # start position
Sfeat->end # end position
Sfeat->strand # 1 means forward, -1 reverse, 0 not relevant

methods which return strings
$feat->primary tag # the main 'name' of the sequence feature,
eg, 'exon'

$feat->source tag # where the feature comes from, e.g. 'BLAST'

methods which return Bio::PrimarySeq objects

Sfeat->seq # the sequence between start and end
Sfeat->entire seq # the entire sequence
$feat->spliced seq # the "joined" sequence, when there are

multiple sub-locations

other useful methods include

Sfeat->overlap($other) # do SeqFeature S$feat and SegFeature $other overlap?

Sfeat->contains ($other) # is S$Sother completely within $feat?

$feat->equals (Sother) # do Sfeat and S$Sother completely agree?
#

$feat->sub SegFeatures create/access an array of subsequence features

It is worth mentioning that one can also retrieve the start and end positions of
a feature using a Bio::LocationI object:

S$location = $feat->location # $location is a Bio::LocationI object
Slocation->start; # start position
S$location->end; # end position

This is useful because one can use a Bio::Location::SplitLocationI object in
order to retrieve the split coordinates inside the Genbank or EMBL join()
statements (e.g. "~ CDS join(51..142,273..495,1346..1474)"'"):

if ($feat->location->isa('Bio::Location::SplitLocationI') &&
Sfeat-—>primary tag eg 'CDS') {
foreach $loc ($feat->location->sub Location) {
print $loc->start,"..",$loc->end, "\n";

}
}

See the Bio::LocationI manpage and the Bio::Location::SplitLocationI manpage for
more information.

If more detailed information is required than is currently available in Seq
objects the RichSeqg object may be used. It is applicable in particular to
database sequences (EMBL, GenBank and Swissprot) with detailed annotations.
Sample usage might be:

@secondary = Srichseg->get secondary accessions;

$division Srichseg->division;
@dates

$seq version = S$richseg->seq version;

Srichseg->get dates;

See the Bio::Seqg::RichSegl manpage for more details.
III.7.2 Representing sequence annotations (Annotation::Collection)

Much of the interesting description of a sequence can be associated with
sequence features but in sequence objects derived from Genbank or EMBL entries
there can be useful information in other "~ "annotation'' sections, such as the
COMMENTS section of a Genbank entry. In order to access this information you'll
need to create an Annotation::Collection object. For example:

$db = new Bio::DB::GenBank;

$seqgobj = $db->get Seq by acc("NM 125788");

$ann _coll = $segobj->annotation;
This Collection object is just a container for other specialized objects, and
its methods are described in the Bio::Annotation::Collection manpage. You can

find the desired object within the Collection object by examining the
" “tagnames'':

foreach $ann (Sann coll->get Annotations) {

print "Comment: ", $ann->as_text if ($ann->tagname eqg "comment");
}
Other possible tagnames include "~ “date changed'', ° keyword'', and
‘“reference''. Objects with the " “reference'' tagname are

Bio::Annotation::Reference objects and represent scientific articles. See the
Bio::Annotation::Reference manpage for descriptions of the methods used to
access the data in Reference objects. There is also a HOWTO on features and
annotation (http://bioperl.org/HOWTOs/html/Feature-Annotation.html).

III.7.3 Representing large sequences (LargeSeq)

Very large sequences present special problems to automated sequence-annotation
storage and retrieval projects. Bioperl's LargeSeqg object addresses this
situation.

A LargeSeq object is a Segl compliant object that stores a sequence as a series
of files in a temporary directory (see sect II.1 or the Bio::Seqgl manpage for a
definition of Seql objects). The aim is to enable storing very large sequences
(e.g. > 100 MBases) without running out of memory and, at the same time,
preserving the familiar bioperl Seqg object interface. As a result, from the
user's perspective, using a LargeSeq object is almost identical to using a Seqg
object. The principal difference is in the format used in the SeqIO calls.
Another difference is that the user must remember to only read in small chunks
of the sequence at one time. These differences are illustrated in the following
code:

Sseqgio = new Bio::SeqIO(-format => 'largefasta',
-file => 't/data/genomic-seq.fasta');
Spseq = $segio->next seq();
Splength = $pseg->length();
$last 4 = Spseg->subseq($plength-3,Splength); # this is OK

On the other hand, the next statement would

probably cause the machine to run out of memory

Slots of data = $pseg->seq(); # NOT OK for a large LargeSeg object
III.7.4 Representing changing sequences (LiveSeq)

Data files with sequences that are frequently being updated present special
problems to automated sequence-annotation storage and retrieval projects.
Bioperl's LiveSeq object is designed to address this situation.

The LiveSeq object addresses the need for a sequence object capable of handling
sequence data that may be changing over time. In such a sequence, the precise
locations of features along the sequence may change. LiveSeq deals with this
issue by re-implementing the sequence object internally as a ~ “double linked
chain.'' Each element of the chain is connected to other two elements (the
PREVious and the NEXT one). There is no absolute position like in an array,
hence if positions are important, they need to be computed (methods are
provided) . Otherwise it's easy to keep track of the elements with their
""LABELs''. There is one LABEL (think of it as a pointer) to each ELEMENT. The
labels won't change after insertions or deletions of the chain. So it's always
possible to retrieve an element even if the chain has been modified by
successive insertions or deletions.

Although the implementation of the LiveSeq object is novel, its bioperl user
interface is unchanged since LiveSeq implements a PrimarySeql interface (recall
PrimarySeqg is the subset of Seq without annotations or SegFeatures - see section
IT.1 or the Bio::PrimarySeqg manpage) . Consequently syntax for using LiveSeq
objects is familiar although a modified version of SeqIO called
Bio::LiveSeq::I0::Bioperl needs to be used to actually load the data, e.g.:

Sloader = Bio::LiveSeq::I10::BioPerl->1load(-db => "EMBL",
-file => "t/data/factor7.embl");
$gene = $loader->gene2liveseq(-gene name => "factor7");

$id = Sgene->get DNA->display id ;

Smaxstart = $gene->maxtranscript->start;
See the Bio::LiveSeq::I0::BioPerl manpage for more details.

ITII.7.5 Representing related sequences - mutations, polymorphisms (Allele,
SegDiff)

A Mutation object allows for a basic description of a sequence change in the DNA
sequence of a gene. The Mutator object takes in mutations, applies them to a
LiveSeq gene and returns a set of Bio::Variation objects describing the net
effect of the mutation on the gene at the DNA, RNA and protein level.

The objects in Bio::Variation and Bio::LiveSeq directory were originally
designed for the "~ "Computational Mutation Expression Toolkit'' project at
European Bioinformatics Institute (EBI). The result of using them to mutate a
gene 1s a holder object, 'SegDiff', that can be printed out or queried for
specific information. For example, to find out if restriction enzyme changes
caused by a mutation are exactly the same in DNA and RNA sequences, we can
write:

use Bio::LiveSeq::I10::BioPerl;
use Bio::LiveSeq::Mutator;

use Bio::LiveSeq::Mutation;

$loader = Bio::LiveSeq::I10::BioPerl->load(-file => "$filename");
$gene = $loader->gene2liveseq(-gene name => $gene name) ;
Smutation = new Bio::LiveSeq::Mutation (-seq =>'G',

-pos => 100);

Smutate = Bio::LiveSeq::Mutator->new (-gene => S$gene,
-numbering => "coding");

$mutate->add Mutation (Smutation);

$seqdiff = S$Smutate->change gene();

SDNA re changes = $seqdiff->DNAMutation->restriction changes;

SRNA re changes = $seqdiff->RNAChange->restriction changes;

SDNA re changes eqg $RNA re changes or print "Different!\n";

For a complete working script, see the change gene.pl script in the
examples/liveseq directory. For more details on the use of these objects see the
Bio::LiveSeq::Mutator manpage and the Bio::LiveSeq::Mutation manpage as well as
the original documentation for the °~ “Computational Mutation Expression Toolkit''
project at http://www.ebi.ac.uk/mutations/toolkit/.

IITI.7.6 Incorporating quality data in sequence annotation (SegWithQuality)

SegWithQuality objects are used to describe sequences with very specific
annotations - that is, data quality annotations. Data quality information is
important for documenting the reliability of base calls in newly sequenced or
otherwise questionable sequence data. The quality data is contained within a
Bio::Seq::PrimaryQual object. Syntax for using SegWithQuality objects is as
follows:

first, make a PrimarySeq object
$seqobj = Bio::PrimarySeqg->new(-seq => 'atcgatcg',
-id => 'GeneFragment-12"',
-accession number => 'X78121"',
—-alphabet => 'dna');
now make a PrimaryQual object
Squalobj = Bio::Seq::PrimaryQual->new(-qual => '10 20 30 40 50 50 20 10°',
-id => 'GeneFragment-12"',
—accession number => 'X78121"',
-alphabet => 'dna'):;
now make the SegWithQuality object
Sswgobj = Bio::Seq::SeqgQithQuality->new(-seq => S$seqobj,
-qual => $qualobj) ;
Now we access the sequence with quality object
Sswgobj->id(); # the id of the SegWithQuality object may not match the
id of the sequence or of the quality
Sswgobj->seq(); # the sequence of the SeqWithQuality object
Sswgobj->qual (); # the quality of the SegWithQuality object

A SegWithQuality object is created automatically when phred output, a *phd file,
is read by SeqlIO, e.g.

Sseqio = Bio::SeqlO->new (-file=>"my.phd", -format=>"phd");
or just 'Bio::SeqIO->new(-file=>"my.phd")'
$segWithQualObj = $segio->next seq;

See the Bio::Seq::SeqWithQuality manpage for a detailed description of the
methods, the Bio::Seq::PrimaryQual manpage, and the Bio::SeqlO::phd manpage.

III.7.7 Sequence XML representations - generation and parsing (SeqIO::game,
SeqIO: :bsml)

The previous subsections have described tools for automated sequence annotation

by the creation of an object layer on top of a traditional database structure.
XML takes a somewhat different approach. In XML, the data structure is
unmodified, but machine readability is facilitated by using a data-record syntax
with special flags and controlled vocabulary.

In order to transfer data with XML in biology, one needs an agreed upon a
vocabulary of biological terms. Several of these have been proposed and bioperl
has at least some support for three: GAME, BSML and AGAVE.

Once a vocabulary is agreed upon, it becomes possible to convert sequence XML
sequence features can be turned into bioperl Annotation and SegFeature objects.
Conversely Seq object features and annotations can be converted to XML so that
they become available to any other systems. Typical usage with GAME or BSML are
shown below. No special syntax is required by the user. Note that some Seqg
annotation will be lost when using XML in this manner since generally XML does
not support all the annotation information available in Seq objects.

S$Sstr = Bio::SeqlO->new(-file => 't/data/test.game’',
-format => 'game');
$seq = S$str->next primary seq();

$id = $seqg->id;
@feats = Sseg->all SeqgFeatures();
$first primary tag = $feats[0]->primary tag;

$str = Bio::SeqIO->new(-file => 'bsmlfile.xml',

-format => 'bsml');

Sseq
$id = $seqg->id;

$str->next primary seq();

@feats = Sseg->all SeqgFeatures();
$first primary tag = $feats[0]->primary tag;

III.7.8 Representing Sequences using GFF (Bio:DB:GFF)

Another format for transmitting machine-readable sequence-feature data is the
Genome Feature Format (GFF). This file type is well suited to sequence
annotation because it allows the ability to describe entries in terms of parent-
child relationships (see http://www.sanger.ac.uk/software/GFF for details).
Bioperl includes a parser for converting between GFF files and SegFeature
objects. Typical syntax looks like:

$gffio = Bio::Tools::GFF->new(-fh => *STDIN, -gff version => 2);
loop over the input stream

while ($feature = $gffio->next feature()) {

do something with feature

}

Sgffio->close();

Further information can be found at the Bio::Tools::GFF manpage. Also see
examples/tools/gff2ps.pl, examples/tools/gb to gff.pl, and the scripts in
scripts/Bio-DB-GFF. Note: this module shouldn't be confused with the module
Bio::DB::GFF which is for implementing relational databases when using bioperl-
db.

ITII.8 Manipulating clusters of sequences (Cluster, ClusterIO)

Sequence alignments are not the only examples in which one might want to
manipulate a group of sequences together. Such groups of related sequences are
generally referred to as clusters. Examples include Unigene clusters and gene
clusters resulting from clustering algorithms being applied to microarray data.

The bioperl Cluster and ClusterIO modules are available for handling sequence
clusters. Currently, cluster input/output modules are available only for Unigene
clusters. To read in a Unigene cluster (in the NCBI XML format) and then extract
individual sequences for the cluster for manipulation might look like this:

my S$stream = Bio::ClusterIO->new(-file => "Hs.data", -format => "unigene");

while (my $in = $stream->next cluster) {
print $in->unigene id() . "\n";
while (my $sequence = $in->next seq) {
print $sequence->accession number . "\n";

}
See the Bio::Cluster::UniGene manpage for more details.
II1.9 Representing non-sequence data in Bioperl: structures, trees and maps
Though bioperl has its roots in describing and searching nucleotide and protein
sequences it has also branched out into related fields of study, such as protein

structure, phylogenetic trees and genetic maps.

ITI1.9.1 Using 3D structure objects and reading PDB files (Structurel,
Structure::I0)

A StructureIO object can be created from one or more 3D structures represented
in Protein Data Bank, or pdb, format (see http://www.rcsb.org/pdb for details).

StructureIO objects allow access to a variety of related Bio:Structure objects.
An Entry object consist of one or more Model objects, which in turn consist of
one or more Chain objects. A Chain is composed of Residue objects, which in turn
consist of Atom objects. There's a wealth of methods, here are just a few:

Sstructio = Bio::Structure::I0->new(-file => "1XYZ.pdb");

$struc = S$structio->next structure; # returns an Entry object

Spseq = S$struc->seqres; # returns a PrimarySeq object, thus
Spseg->subseq (1, 20) ; # returns a sequence string

@atoms = $struc->get atoms (Sres); # Atom objects, given a Residue
@xyz = Satom->xyz; # the 3D coordinates of the atom

These lines show how one has access to a number of related objects and methods.
For examples of typical usage of these modules, see the scripts in the examples/
structure subdirectory. Also see the Bio::Structure::I0 manpage, the
Bio::Structure: :Entry manpage, the Bio::Structure::Model manpage, the
Bio::Structure::Chain manpage, the Bio::Structure::Residue manpage, and the
Bio::Structure::Atom manpage for more information.

I1I1.9.2 Tree objects and phylogenetic trees (Tree::Tree, TreelO, PAML)

Bioperl Tree objects can store data for all kinds of computer trees and are
intended especially for phylogenetic trees. Nodes and branches of trees can be
individually manipulated. The TreelIO object is used for stream I/O of tree
objects. Currently only phylip/newick tree format is supported. Sample code
might be:

Streeio = new Bio::TreeIO(—-format => 'newick', -file => S$treefile);
Stree = Streeio->next tree; # get the tree
@nodes = Stree->get nodes; # get all the nodes

Stree->get root node->each Descendent; # get descendents of root node

See the Bio::TreelIO manpage and the Bio::Tree::Tree manpage for details.

Using the Bio::Tools::Phylo::PAML module one can also parse the results of the
PAML tree-building programs codeml, baseml, basemlg, codemlsites and yn00. See
the Bio::Tools::Phylo::PAML manpage or the PAML HOWTO
(http://bioperl.org/HOWTOs/html/PAML.html) for more information.

I11.9.3 Map objects for manipulating genetic maps (Map::MapI, MapIO)

Bioperl map objects can be used to describe any type of biological map data
including genetic maps, STS maps etc. Map I/0 is performed with the MapIO object
which works in a similar manner to the SeqIO, SearchIO and similar I/O objects
described previously. In principle, Map I/0 with various map data formats can be
performed. However currently only mapmaker format is supported. Manipulation of
genetic map data with Bioperl Map objects might look like this:

Smapio = new Bio::MapIO(-format => 'mapmaker', -file => $mapfile);

$map = Smapio->next map; # get a map
Smaptype = Smap->type ;
foreach Smarker (Smap->each element) {
Smarker name = $marker->name ; # get the name of each map marker

}

See the Bio::MapIO manpage and the Bio::Map::SimpleMap manpage for more
information.

I11.9.4 Bibliographic objects for querying bibliographic databases (Biblio)

Bio::Biblio objects are used to query bibliographic databases, such as MEDLINE.
The associated modules are built to work with OpenBQS-compatible databases (see
http://industry.ebi.ac.uk/openBQS). A Bio::Biblio object can execute a query
like:

my $collection = $biblio->find ('brazma', 'authors');
while ($collection->has next) {
print Scollection->get next;

}

See the Bio::Biblio manpage, the scripts/biblio/biblio.PLS script, or the
examples/biblio/biblio examples.pl script for more information.

IIT.9.5 Graphics objects for representing sequence objects as images (Graphics)

A user may want to represent sequence objects and their SegFeatures graphically.
The Bio::Graphics::* modules use Perl's GD.pm module to create a PNG or GIF
image given the SegFeatures (Section III.7.1) contained within a Seg object.

These modules contain numerous methods to dictate the sizes, colors, labels, and
line formats within the image. For information see the excellent Graphics-HOWTO
(http://bioperl.org/HOWTOs/html/Graphics-HOWTO.html) or in the docs/howto
subdirectory. Additional documentation can be found in the Bio::Graphics
manpage, the Bio::Graphics::Panel manpage, and in the scripts in the
examples/biographics/ and scripts/graphics directories in the Bioperl package.

II1.10 Bioperl alphabets

Bioperl modules use the standard extended single-letter genetic alphabets to
represent nucleotide and amino acid sequences.

In addition to the standard alphabet, the following symbols are also acceptable

in a biosequence:

? (a missing nucleotide or amino acid)

- (gap in sequence)

IIT1.10.1 Extended DNA / RNA alphabet

(includes symbols for nucleotide ambiguity)

Symbol Meaning Nucleic Acid
A A Adenine
C C Cytosine
G G Guanine
T T Thymine
U U Uracil

M A or C

R A or G

W A or T

S C or G

Y Cor T

K G or T

\Y% A or C or G

H A or C or T

D A or G or T

B C or Gor T

X G or A or T or C

N G or A or T or C

IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE:
Cornish-Bowden (1985) Nucl. Acids Res. 13: 3021-3030.

IIT.10.2 Amino Acid alphabet

Alanine
Aspartic Acid, Asparagine
Cystine
Aspartic Acid
Glutamic Acid
Phenylalanine
Glycine
Histidine
Isoleucine
Lysine
Leucine
Methionine

Asparagine

U 2 2 B "R H D Q=0 QWP

Proline

Glutamine
Arginine
Serine
Threonine
Valine
Tryptophan
Unknown
Tyrosine

Glutamic Acid, Glutamine

* N K X =2 < H »n wmo

Terminator

IUPAC-IUP AMINO ACID SYMBOLS:
Biochem J. 1984 Apr 15; 219(2): 345-373
Eur J Biochem. 1993 Apr 1; 213(1): 2

distribution: B

